Electron Scattering Processes Anisotropy in Al-Y Dilute Alloys in Strong Magnetic Fields

  • S. E. Demyanov
  • A. A. Drozd
  • A. V. Petrov
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)


The present investigation is a part of work of search for cryoconducting material on the base of high pure Al, which displays optimal electrical and mechanical properties. In Al-Y alloys the electron-impurity and electron-phonon scattering mechanisms in transverse magnetic fields up to 8T, and at helium-hydrogen temperature region were studied. The deviation from Matthiessen’s rule (DMR) was studied at different positions of magnetic field vector relative to axes of a crystal. The results obtained evidence correlation of DMR temperature dependence and magnetic field vector angular position, and were analyzed in terms of competition of two scattering mechanisms, one of which increases scale of the electron distribution function anisotropy in magnetic field, and the other suppresses it. The first one, the umklapp-type scattering is effective when electron orbits in magnetic field would pass through the “hot spots”on the Fermi surface. The second one, diffusion electron-phonon scattering, is effective at magnetic field directions, which provide passage of electron from the Fermi surface section to equivalent one.


Magnetic Field Electrical Resistivity Fermi Surface Strong Magnetic Field Transverse Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Gostischev, Cryoconductor of high pure aluminum, Fiz. Met. Metalloved. 62: 303 (1986).Google Scholar
  2. 2.
    S. E. Demyanov, A. A. Drozd, and. M. L. Petrovskii. Electrical conductivity properties of aluminum at complex influence of mechanical load, magnetic field. and temperature, Fiz. C’him. Obrabotki Mater. 3: 117 (1987).Google Scholar
  3. 3.
    V. I. Gostischev. S. E. Demyanov, and V. R. Sobol. Deformational scattering mechanism and distribution function of conduction electrons in aluminum, Fiz. Met. Metalloved. 60: 71 (1985).Google Scholar
  4. 4.
    V. I. Gostischev, S. E. Demyanov, V. R. Sobol, and D. V.Pashik. On the anisotropic electron-dislocation scattering in Al in charge transfer. Phys.Staff. Sol.(b) 160: K133 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    S. E. Demyanov, A. A. Drozd, A. V. Petrov, and S. P. Zakatov. Electrical characteristics of Al-Y dilute alloys under low-temperature plastic deformation. Adv. Crvog. Eng. (Materials). 40: 1377 (1994).Google Scholar
  6. 6.
    C. Papastaikoudis, K. Papathanasopoulos. E. Rocofylou, and W. Tselfes. Temperature-dependent part of the resistivity of Al-Cu alloys, Phys.Rev.B 14: 3394 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    S. Kawata and T. Kino, Deviations from Matthiessen’s rule in dilute aluminum alloys,.I.Phvs.Soc.Jap. 39: 684 (1974).Google Scholar
  8. 8.
    T. Dosdale and G. J. Morgan, The temperature dependent resistivity of dilute aluminium alloys, J.Phys.F 4: 402 (1974).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    R. S. Seth and S. B. Woods, Electrical resistivity and deviations from Matthiessen’s rule in dilute alloys of aluminum, cadmium, silver and magnesium Phys.Rev. B 2: 2961 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    S. P.Alisova and P. B.Budberg. State diagrams of metallic systems. in: “Itogi Nauki i Techniki”,VINITI, Moscow (1971), p.140.Google Scholar
  11. 11.
    Yu. Kagan and V. N. Flerov, On the theory of the resistance and magnetic resistance of metals at low temperatures. Zh.Exper. Tear. Hz. 66: 1374 (1974).Google Scholar
  12. 12.
    R. N.Gurzhi and A. I. Kopeliovich. On the galvanomagnetic properties of metals with the Fermi surfaces of closed type at low temperatures. Zh.Exper.Teor.fiz. 67: 2307 (1974).Google Scholar
  13. 13.
    V. I. Gostischev, M. Glinskii, A. A. Drozd, and S. E. Demyanov. Quantum phenomena in aluminum at magnetic breakdown effect. Zh.Exper.Teor.Fiz. 74: 1102 (1978).Google Scholar
  14. 14.
    Y. Kagan and A. P. Zhernov. On the nature of the nonlinear concentration dependence of the resistance of metals containing impurities, Zh.Exper.Teor.Fiz. 60: 1832 (1971).Google Scholar
  15. 15.
    R. N. Gurzhi and A. I. Kopeliovich, Low-temperature electrical conductivity of pure metals, in: “Elektrony Provodimosti”, Nauka, Moscow (1985), p. 7Google Scholar
  16. 16.
    G. Kh. Panova. A. P. Zhernov, and V. I. Kutaitsev. On the temperature-dependent part of the impurity resistance in aluminium alloys with gold or silver, Zh.Exper.Teor.F iz. 56: 104 (1969).Google Scholar
  17. 17.
    A. Bergmann. M. Kaveh, and N. Wizer, Electron-dislocation scattering and negative deviations from Matthiessen’s rule, Solid State Commun. 34: 369 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • S. E. Demyanov
    • 1
  • A. A. Drozd
    • 1
  • A. V. Petrov
    • 1
  1. 1.Institute of of Solid State and Semiconductor PhysicsNASMinskBelarus

Personalised recommendations