Flux Pinning Mechanisms in Superconducting A15 Materials and the Optimization of Their Transport Properties

  • D. RodriguesJr.
  • S. Foner
  • D. G. Pinatt
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)


The superconducting properties and microscopic characterization are presented for Nb3Sn, (Nb,Ta)3Sn and (Nb,Ti)3Sn conductors made using several different fabrication routes. The element concentration profiles at the grain boundaries, determined using STEM, leads to a pinning model that includes the pinning by normal boundaries and by the grain boundary flux shear. The use of the shear modulus C66 for all the range of field and temperature does not fit the Kramer theory. Use of a flux pinning effective grain size, Deffective, in the model leads to good agreement. Deffective depends on the magnetic field (flux line spacing), has a smooth behavior at high fields and increases almost exponentially at low fields following the flux line spacing behavior, as expected. The determination and optimization of Deffective leads to the best superconductor current carrying characteristics.


Magnetic Field Grain Size Distribution Critical Current Density Flux Line Experimental Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Rodrigues Jr., C. L. H. Thieme, D. G. Pinatti, and S. Foner, IEEE Trans. Appl..Supercon., 5: 1607 (1995).CrossRefGoogle Scholar
  2. 2.
    E. J. Kramer, J. Appl. Phys., 44: 1360 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    The internal Sn wires were supplied by M. Takayasu (Plasma Science and Fusion Center-PSFC, MIT), and were fabricated in/before 1992, when this work began. The bronze Vacuumschmelze samples were supplied by S. Pourrahimi ( Plasma Science and Fusion Center-PSFC, MIT).Google Scholar
  4. 4.
    E. Gregory, G. M. Ozeryansky, and B. A. Zeitlin, Adv. Cryo. Eng., 38: 579 (1992).Google Scholar
  5. 5.
    D. B. Smathers, P. M. O’Larey, M. M. Steeves, and M. O. Hoenig, IEEE Trans. Magn., 24: 1131 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    M. Takayasu, C. Y. Gung, M. M. Steeves, M. O. Hoenig, J. R. Hale, and D. B. Smathers, IEEE Trans. Magn., 27: 1767 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    D. Rodrigues Jr., and D. G. Pinatti, In: Progress in High Temperature Superconductivity - Proc. of Int. Conf on Transport Properties of Superconductors - ICTPS90, R. Nicolsky, ed., World Scientific, Singapore (1990), p. 757.Google Scholar
  8. 8.
    D. Rodrigues Jr., In: Proc. of XIX National Meeting of the Brazilian Physical Society, SBF, CaxambtiMG-Brazil (1996), p. 187.Google Scholar
  9. 9.
    D. Dew-Hughes, Phil. Mag. B, 55: 459 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    A. M. Campbell, and J. E. Evetts, Advances in Physics, 21: 199 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    R. Labush, Phys. Stat. Sol., 32: 439 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    E. H. Brandt, Phys. Rev. B, 34: 6514 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    J. E. Evetts, and C. J. G. Plummer, In: Proc. of Intern. Symp. on Flux Pinning and Electromagnetic Properties in Superconductors, Matsushita,T.,Yamafuji,K.,Irie,F., eds., Fukuoka-Japan (1985), p. 146.Google Scholar
  14. 14.
    J. Frenkel, Z Phys., 37: 572 (1926).ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    C. L. H. Thieme, D. Rodrigues Jr., and S. Foner, Appl.Phys.Lett., 65: 1042 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    C. L. H. Thieme, J. B. Kim, M. Takayasu, S. Foner, Y. Iwasa, D. Rodrigues Jr., Y. Yamada, T. Ando, Adv. Cryog. Eng., 42: 1439 (1996).Google Scholar
  17. 17.
    D. Rodrigues Jr., and A.J. Garratt-Reed, Acta Microscopica, 5B: 212 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • D. RodriguesJr.
    • 1
  • S. Foner
    • 2
  • D. G. Pinatt
    • 1
    • 3
  1. 1.Departamento de Engenharia de MateriaisFaculdade de Engenharia Química de LorenaLorenaBrazil
  2. 2.Francis Bitter Magnet LaboratoryMITCambridgeUSA
  3. 3.lnstitute of PhysicsUNICAMPCampinasBrazil

Personalised recommendations