Regenerator Matrix Materials Based on Ceramic Composites

  • W. N. Lawless
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Research on a large number of inexpensive ceramic composites for regenerator applications is reported. The composites are prepared by hot-pressing and consist of ceramic powders of spin-frustrated spinels in halide matrices, and thermal data on six composites selected to date are given. This series of composites offers specific heats equivalent to, or superior than, those of Er3Ni below 13 K, and thermal diffusivities are about an order of magnitude larger than that of Er3Ni. The composites are tough materials and have indentation-hardness values 10–20 times larger than that of Pb. Future plans are discussed, including the fabrication of composite spheres for user testing.

Keywords

Thermal Diffusivity Ceramic Composite Thermal Conductivity Measurement Regenerator Material Knoop Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Walker, Cryocoolers ( Plenum Press, New York, 1984 ), p. 33.Google Scholar
  2. 2.
    K. H. J. Buschow, J. F. Olijhoek, and A. R. Miedma, Cryogenics 15, 261 (1975).CrossRefGoogle Scholar
  3. 3.
    H. Nakashima, K. Ishibashi, and Y. Ishizaki, Proc. ICEC 10, Butterworths, Guildford, UK (1984), 54–57.Google Scholar
  4. 4.
    M. Sahashi, Y. Tokai, T. Kuriyama, H. Nakagome, R. Li, M. Ogawa, and T. Hashimoto, Adv. in Cryogenic Eng., Vol. 35 ( Plenum Press, New York, 1990, Edit. R. W. Fast ), p. 1175.Google Scholar
  5. 5.
    R. Li, O. Yoshida, T. Hashimoto, T. Kuriyama, and H. Nakagome ibid., p. 1183.Google Scholar
  6. 6.
    E. M. Ludeman and C. B. Zimm, Adv. in Cryogenic Eng., Vol. 37 ( Plenum Press, New York, Edit. R. W. Fast, 1992 ), p. 989.CrossRefGoogle Scholar
  7. 7.
    G. Green, J. Chafe, and J. Stevens, ibid., p. 1003.Google Scholar
  8. 8.
    R. A. Ackerman, ibid., p. 982.Google Scholar
  9. 9.
    M. Ogawa, R. Li, and T. Hashimoto, Cryogenics 31, 405 (1991).CrossRefGoogle Scholar
  10. 10.
    W. N. Lawless, C. F. Clark, and T. K. Gupta, Adv. in Cryogenic Eng., Vol. 30 (Plenum, New York, Edit. A. F. Clark and R. P. Reed,1984), p. 433. T. K. Gupta, W. N. Lawless, C. E. Oberly, G. J. Bich, G. R. Wagner, and D. S. Holmes, Adv. in Cryogenic Eng., Vol. 32 ( Plenum, New York, Edit. R. P. Reed and A. F. Clark, 1986 ), p. 225.Google Scholar
  11. 11.
    W. N. Lawless and C. F. Clark, J. Appl. Phys. 64, 2729 (1988).CrossRefGoogle Scholar
  12. 12.
    W. N. Lawless, Phys. Rev. B30 6057 (1984) and U. S. Patent Nos. 4,296,147, 4,354,355, and 4, 356, 235.Google Scholar
  13. 13.
    W. N. Lawless, J. Low Temp. Phys. 41, 339 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • W. N. Lawless
    • 1
  1. 1.CeramPhysics, Inc.WestervilleUSA

Personalised recommendations