Transient Response of a Composite Superconducting Wire in Spatially Periodical Longitudinal A.C. Magnetic Fields

  • E. M. J. Niessen
  • R. M. J. van Damme
  • P. J. Zandbergen
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

In this paper analytical results are presented concerning the transient response of a composite superconducting wire in spatially periodical longitudinal ac magnetic fields. Locally solutions are positively, negatively or unsaturated in a region and the positions of the interfaces between different regions are calculated. One dominant time constant has to be included in the analysis due to the twist. Other time constants can be neglected, because the periodicity length of the field is assumed to be much larger than the radius of the wire. We focus on the influence of the dominant time constant on the interfaces.

Keywords

Applied Magnetic Field Twist Angle Stationary Profile Electromagnetic Response Saturation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.J.M. van de Klundert, E.M.J. Niessen and P.J. Zandbergen, Electromagnetic response of composite superconducting wires, Journal of Engineering Mathematics 26, 231–265 (1992).CrossRefGoogle Scholar
  2. 2.
    E.M.J. Niessen, Continuum Electromagnetics of Composite Superconductors, Ph.D. thesis, University of Twente, The Netherlands (1993).Google Scholar
  3. 3.
    C.P. Bean, Magnetization of hard superconductors, Phys. Rev. Lett., Vol. 8, pp. 250–253 (1962).CrossRefGoogle Scholar
  4. 4.
    W.J. Carr, jr., Electromagnetic theory for filamentary superconductors, Phys. Rev. B11, pp. 1547–1554 (1975).CrossRefGoogle Scholar
  5. 5.
    B. Turck, Courants de circulation et pertes dans les composites supraconducteurs soumis a une induction longitudinale variable, Revue de physiquee appliquée, pp. 369–375 (1976).Google Scholar
  6. 6.
    G. Ries and K.P. Jüngst, Filament coupling in multifilamentary superconductors in pulsed longitudinal fields, Cryogenics 26 (1976).Google Scholar
  7. 7.
    L.J.M. van de Klundert, New developments on calculating and measuring AC losses in composite superconductors, IEEE transactions on magnetics, vol. 28, no. 1, pp. 705–710 (1992).CrossRefGoogle Scholar
  8. 8.
    E.M.J. Niessen and P.J. Zandbergen, New analytical results for the electromagnetic response of a composite superconducting wire in parallel fields, Proceedings Applied Superconductivity Conference, Chicago, USA (1992).Google Scholar
  9. 9.
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical tables, John Wiley and Sons, New York (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • E. M. J. Niessen
    • 1
  • R. M. J. van Damme
    • 1
  • P. J. Zandbergen
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteThe Netherlands

Personalised recommendations