Advertisement

Magnetic Hysteresis Losses and Critical Current Densities in Submicron Filament Bronze-Processed Nb3Sn Wires

  • S. Sakai
  • K. Miyashita
  • K. Kamata
  • M. Kobayashi
  • K. Tachikawa
  • H. Tanaka
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Submicron filament bronze-processed multifilamentary Nb3Sn wires with Cu-5at%Sn-X matrix and Nb-lat%Ta cores have been fabricated. The Ge content in bronze matrix is changed in the range from 0% to 1% for optimizing Ge content. The cross-sectional structure of wires was the central-Cu-stabilizer type to facilitate, by external Sn diffusion, improvement in critical current density,Jc, and hysteresis losses,Qh. The simultaneous addition of 0.25at%Ge to the bronze matrix and lat%Ta to the Nb core enhances the non Cu Je by 60%, and decrease the Qh by approximately 60%. By Sn plating, the non Cu Jc was improved by 10%, and the Qh was reduce by 5%. The formation of thin layer richer in Ge is observed in the Nb3Sn layer and the matrix adjacent to the Nb3Sn layer, which may be effective for the improvements in Jc and Qh characteristics.

Keywords

Critical Current Density Magnetic Hysteresis Hysteresis Loss Core Wire Filament Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    I.Hlasnik, S.Takacs, V.P.Burjak, M.Majoras, J.Krajicik, L.Krempansky, M.Polak, M.Jergel, T.A.Korneeva, O.N.Mironova, I.Ivan, Cryogenics 25; 558 (1985)Google Scholar
  2. 2.
    T.Kishida, T.Kaakiuchi, H.Mizuguchi, F.Fujiwara, T.Nagai, K.Yoshigaki, M.Morita, T.Yamada, paaper(in Japanese) presented at the Cryogenic Engineering and Superconductivity Conference, preprint p.189(1990)Google Scholar
  3. 3.
    Y.Kubota, H.Okon, T.Ogasawara, Cryogenic Engineering 21; 281 (in Japanese) (1986)Google Scholar
  4. 4.
    K.Kamata, S.Sakai, K.Tachikawa, T.Taniguchi, T.Ajioka, H.Hatakeyama, IEEE Trans. on Magnetics, 27, No. 2, 2403 (1991)Google Scholar
  5. 5.
    S.Sakai, K.Miyashita, K.Kamata, K.Tachikawa, T.Taniguchi, K.Endoh, H.Hatakeyama, Adv. Cryogenic Engr./Material, 38B 595 (1992)Google Scholar
  6. 6.
    S.Sakai, K.Miyashita, K.Kamata, K.Endoh, K.Tachikawa, and H.Tanaka, IEEE Trans. on ASC 3. No. 1 990 (1993)Google Scholar
  7. 7.
    I.Hlasnik, J.Phys. (Paris)45;C1–467 (1984)Google Scholar
  8. 8.
    K.Tachikawa, M.Terada, M.Endo, and Y.Miyamoto, Cryogenics 33, No. 2 205 (1993)Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • S. Sakai
    • 1
  • K. Miyashita
    • 1
  • K. Kamata
    • 1
  • M. Kobayashi
    • 2
  • K. Tachikawa
    • 2
  • H. Tanaka
    • 3
  1. 1.HITACHI CABLE, Ltd.Tsuchiura-shi Ibaraki-ken, 300Japan
  2. 2.Faculty of EngineeringTokai UniversityHiratsuka-shi Kanagawa-kenJapan
  3. 3.Super-GMKita-ku, Osaka-shiJapan

Personalised recommendations