Highly Anisotropic Filaments in BSCCO-Based Multifilamentary Tapes

  • Gérard Duperray
  • Denis Legat
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


Published results indicate that high-current-carrying capacities of BSCCO-based conductors have been obtained under the following conditions: (1) monofilamentary conductors with a core thickness less than 30 µm and (2) the largest possible shape factor (30 to 70). When the first condition is feasible for multifilamentary tapes, it generally corresponds to large perturbations of the filament geometry. We succeeded in making several 10-m-long tapes with good filament geometry and a shape factor of more than 60. We present results of structural examination of the filaments, phase stability during thermal treatment, and critical current density. Typical results were 430 A/mm2 at 4.2 K and 15 A/mm2 at 77 K for 45-filament Bi-2223-phase tapes.


Critical Current Density Core Wire Silver Powder Core Thickness France Telecom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Sato and N. Nobuhiro, Physica C 190: 50 (1991).CrossRefGoogle Scholar
  2. 2.
    A.A. Zhukov and R. Flúkiger, Supercond. Sci. Technol. 5: 262 (1992).CrossRefGoogle Scholar
  3. 3.
    Y.C. Guo, H.K. Liu, and S.X. Dou, Appl. Supercond. 1: 25 (1993).CrossRefGoogle Scholar
  4. 4.
    K. Sato and N. Shibata, Cryogenics 33: 243 (1993).CrossRefGoogle Scholar
  5. 5.
    P. Dubots, D. Legat, F. Deslandes, and B. Raveau, p. 523 in: Advances in Cryogenic Engineering—Materials, vol. 36, Plenum, New York (1989).Google Scholar
  6. 6.
    Y. Feng, Y.E. High, D.C. Larbalestier, Y.S. Sung, and E.E. Hellstrom, Appl. Phys. Lett. 62: 1553 (1993).CrossRefGoogle Scholar
  7. 7.
    H. Sekine and J. Schwarz, J. Appl. Phys. 70: 1596 (1991).CrossRefGoogle Scholar
  8. 8.
    C.H. Rosner, M.S. Walker, P. Haldar, and L.R. Motowidlo, Cryogenics 32: 940 (1992).CrossRefGoogle Scholar
  9. 9.
    K. Sato, Sumitomo Electric Industries, Ltd., Osaka, Japan, U.S. Patent 5 114 908 (5/19/1992).Google Scholar
  10. 10.
    P. Dubots and D. Legat, Alcatel Alsthom Recherche, Marcoussis, France, Patent FR 91 04 629 (4/13/1992).Google Scholar
  11. 11.
    U. Endo, Jpn. J. Appl. Phys. 27: L1476 (1988).CrossRefGoogle Scholar
  12. 12.
    L. Pierre, D. Morin, J.C. Toledano, and H. Savary, J. Appl. Phys. 68: 2296 (1990).CrossRefGoogle Scholar
  13. 13.
    Y.L. Chen and R. Stevens, J. Amer. Ceram. Soc. 75: 1142 (1992).CrossRefGoogle Scholar
  14. 14.
    Y.L. Chen and R. Stevens, J. Amer. Ceram. Soc. 75: 1150 (1992).CrossRefGoogle Scholar
  15. 15.
    G. Duperray and D. Legat, paper PDB-21, Proceedings of the European Conference on Applications of Superconductivity (EUCAS ‘83) held in Göttingen, Germany October 4–8, 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gérard Duperray
    • 1
  • Denis Legat
    • 1
  1. 1.Materials Engineering DepartmentAlcatel Alsthom RechercheMarcoussisFrance

Personalised recommendations