Fabrication of BSCCO-2212 Composite Conductors by Dip Coating and Powder-in-Tube Techniques

  • K. R. Marken
  • W. Dai
  • S. Hong
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


Progress has been made in the development of long BSCCO-2212 phase conductors fabricated in the form of dip-coated tapes and as both monofilamentary and multifilamentary powder-in-tube wires and tapes. Single and multiple dip coatings have been made on silver tape in lengths up to 30 meters. Heat treatment studies in progress have been aimed at improving critical current density (Jc) at 4.2 K. Short sample values attained to date exceed 9×105 A/cm2 at 0 T and 1×105 A/cm2 at 10 T. Powder-in-tube conductors have been fabricated in lengths up to 15 m at 1 mm final diameter, both as monofilament and 55 filament conductors. Efforts to improve Jc have addressed heat treatment variables such as maximum temperature and cooling rate, as well as process methods that affect filament uniformity. In rolled monofilament tapes short sample Jc has reached 2×105 A/cm2 at 0 T. The 55 filament composite has reached 6×104 A/cm2 at 0 T over a 1 meter length.


Critical Current Density Short Sample Ceramic Layer Final Diameter Heat Treatment Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Tenbrink, M. Wilhelm, K. Heine, and H. Krauth, Development of technical high-Ta superconduc- tor wires and tapes, Trans. Appl. Supercond. 3: 1123 (1992).CrossRefGoogle Scholar
  2. 2.
    K. Nomura, M. Seido, H. Kitaguchi, H. Kumakura, K. Togano, and H. Maeda, Fabrication condi- tions and superconducting properties of Ag-sheathed Bi-Sr-Ca-Cu-O tapes prepared by partial melting and slow cooling process, Appl. Phys. Lett. 62: 2131 (1993).CrossRefGoogle Scholar
  3. 3.
    J. Shimoyama, K. Kadowaki, H. Kitaguchi, H. Kumakura, K. Togano, H. Maeda, and K. Nomura, Processing and fabrication of Bi2Sr2Ca1Cu2O/Ag tapes and small scale coils, Appl. Supercond. 1: 43 (1993).CrossRefGoogle Scholar
  4. 4.
    A. Endo and S. Nishikida, Effects of heating temperature and atmosphere on critical current density Bi2Sr2Ca1Cu2Ag0.80 Ag-sheathed tapes, Trans. Appl. Supercond. 3: 931 (1992).CrossRefGoogle Scholar
  5. 5.
    L.M. Rubin, T.P. Orlando, J.B. Vander Sande, G. Gorman, R. Savoy, R. Swope, and R. Beyers, Phase stability limits of Bi2Sr2Ca1Cu2O and Bi2Sr2Ca2Cu30, Appl. Phys. Lett. 61: 1977 (1992).CrossRefGoogle Scholar
  6. 6.
    D.R. Dietderich, B. Ullmann, H.C. Freyhardt, J. Kase, H. Kumakura, K. Togano, and H. Maeda, Textured thick films of Bi2Sr2Ca1Cu2O, Jpn. J. Appl. Phys. 29: L1100 (1990).CrossRefGoogle Scholar
  7. 7.
    Y. Feng, K.E. Hautanen, Y.E. High, D.C. Larbalestier, R. Ray II, E.E. Hellstrom, and S.E. Babcock, Microstructural analysis of high critical current density Ag-clad Bi-Sr-Ca-Cu-O (2:2:1:2) tapes, Physica C 192: 93 (1992).CrossRefGoogle Scholar
  8. 8.
    M. Yang and M.J. Goringe, U.K. Patent #9310637.5, Method of making ceramic superconducting device (1993).Google Scholar
  9. 9.
    T.H. Tiefel, S. Jin, G.W. Kammlott, J.E. Graebner, R.B. van Dover, and N.D. Spencer, Fabrication of thin-film superconductors by bulk processing, Appl. Phys. Lett. 58: 1917 (1991).CrossRefGoogle Scholar
  10. 10.
    J. Shimoyama, N. Tomita, T. Morimoto, H. Kitaguchi, H. Kumakura, K. Togano, H. Maeda, K. Nomura, and M. Seido, Improvement of reproducibility of high transport Jc for BiSrCaCuO/Ag tapes by controlling Bi content, Jpn. J. Appl. Phys. 31: L1328 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • K. R. Marken
    • 1
  • W. Dai
    • 1
  • S. Hong
    • 1
  1. 1.Oxford Instruments Inc, Superconducting TechnologyCarteretUSA

Personalised recommendations