Effects of Scandium on the Microstructure and Tensile Behavior of Al-Li-Cu-Mg-Zr Alloy

  • X. J. Jiang
  • Y. Y. Li
  • W. Deng
  • L. Y. Xiong
  • W. M. Wu
  • Y. J. Gao
  • C. X. Shi
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

The effects of various Sc contents on the microstructure, tensile properties, and fracture behavior of Al-Li-Cu-Mg-Zr alloy in the natural- and artificial-aged conditions have been investigated. The temperature dependence of the tensile properties of these alloys was determined in the rolling direction from 290 to 77 K. As the temperature decreased, the strength and ductility of the Sc-containing alloys increased. In all the alloys, δ′ (A13Li) and S′ (Al2CuMg) are the main strengthening phases, and in the Sc-containing alloys, A13Li/A13Sc particles also were effective in improving the strength. The variation of positron annihilation parameters with test temperature was also measured.

Keywords

Positron Annihilation Peak Aged Peak Aged Condition Positron Lifetime Spectrum Peak Aged Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Noble, S.J. Harris, and K. Dinsdale, Yield characteristics of aluminium-lithium alloys, Met. Sci. 16: 425 (1982).CrossRefGoogle Scholar
  2. 2.
    T.H. Sanders, Jr. and E.A. Starke, Jr., The effect of slip distribution on the monotonic and cyclic ductility of Al-Li binary alloys, Acta Metall. 30: 927 (1982).CrossRefGoogle Scholar
  3. 3.
    P.J. Gregson and H.M. Flower, Microstructural control of toughness in aluminium-lithium alloys, Acta Metall. 33: 527 (1985).CrossRefGoogle Scholar
  4. 4.
    E.J. Lavernia, T.S. Srivatsan, and F.A. Mohamed, Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys, J. Mater. Sci. 25: 1137 (1990).Google Scholar
  5. 5.
    T.H. Sanders, Jr. and E.A. Starke, Jr., The sensitivity of Al-Li alloys to microstructure, p. 13 in “Advanced Aluminium and Magnesium Alloys,” T. Khan and G. Effenberg, eds., Amsterdam (1990).Google Scholar
  6. 6.
    X.J. Jiang, Y.Y. Li, and C.X. Shi, The tensile fracture of Ag-containing Al-Li-Cu-Mg-Zr alloys, in “Advances in Cryogenic Engineering—Materials,” vol. 40, Plenum Press, New York (1994).Google Scholar
  7. 7.
    N. Blake and M.A. Hopkins, Constitution and age hardening of Al-Sc alloys, J. Mater. Sci. 20: 2861 (1985).CrossRefGoogle Scholar
  8. 8.
    W. Brandt and A. Dupasqier, eds., “Positron Solid-State Physics,” North Holland, Amsterdam (1983).Google Scholar
  9. 9.
    X.J. Jiang, Microstructure and tensile fracture mechanisms of Al-Li alloys containing Zn, Ag or Sc, Ph.D. dissertation, Institute of Metal Research, Academia Sinica, Shenyang, China (1993).Google Scholar
  10. 10.
    D. Dew-Hughes, E. Creed, and W.S. Miller, Grain boundary failure in an Al-Li alloy, Mater. Sci. Technol. 4: 106 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • X. J. Jiang
    • 1
  • Y. Y. Li
    • 1
  • W. Deng
    • 1
  • L. Y. Xiong
    • 1
  • W. M. Wu
    • 2
  • Y. J. Gao
    • 2
  • C. X. Shi
    • 1
  1. 1.Institute of Metal ResearchAcademia SinicaShenyangChina
  2. 2.Physics DepartmentGuangxi UniversityNanningChina

Personalised recommendations