Development of a High Toughness Weld for Incoloy Alloy 908

  • C. H. Jang
  • I. S. Hwang
  • R. G. Ballinger
  • M. M Steeves
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


Incoloy® alloy 908+ is a candidate conduit material for the large-scale Nb3Sn superconducting magnets of the International Thermonuclear Experimental Reactor (ITER).1 It is a nickel-iron base precipitation-hardening superalloy with a chemical composition that has been optimized for a low coefficient of thermal expansion, superior cryogenic structural properties, and phase stability during the Nb3Sn reaction heat treatment.2 The alloy precipitates γ′, Ni3(A1,Ti,Nb), as the primary strengthening phase and has demonstrated excellent mechanical properties at both 298 and 4 K.3,4 However, welds of the alloy have shown reduced fracture toughness. Since fabrication of the cablein-conduit conductors for ITER will require welding, the motive of the work has been to improve fracture toughness while maintaining adequate weld strength.


Fracture Toughness Ultimate Tensile Strength Filler Metal Postweld Heat Treatment Fatigue Crack Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.T. Summers, J.R. Miller, and J.R. Heim, The international thermonuclear experimental reactor (ITER); Design and materials selection, Adv. Cry. Eng., 36: 769 (1990).Google Scholar
  2. 2.
    M.M. Moira,“Alloy 908 - A New High-Strength, Low Coefficient of Thermal Expansion Alloy For Cryogenic Application,” M.S. Thesis, MIT (1989).Google Scholar
  3. 3.
    I.S. Hwang, M.M. Mona, R.G. Ballinger, H. Nakajima, S. Shimamoto, and R.L. Tobler, Charpy absorbed energy and Jtc as measures of cryogenic fracture toughness, JTEVA, 20 (4): 248 (1992).Google Scholar
  4. 4.
    I.S. Hwang, R.G. Ballinger, M.M. Mona, and M.M. Steeves, Mechanical properties of Incoloy 908 - an Update, Adv. Cry. Eng., 38: 1 (1992).Google Scholar
  5. 5.
    G.A. Knorovsky et al., Inconel 718: a solidification diagram, Met. Trans., 20A: 2149 (1989).CrossRefGoogle Scholar
  6. 6.
    U. Heubner, M. Kohler and B. Prinz, Determination of the solidification behavior of some selected superalloys, in: “Superalloys 1988,” S. Reichman et. al. ed., The Metallurgical Society, (1988).Google Scholar
  7. 7.
    R. Nakkalil, N.L. Richards and M.C. Chaturvedi, Fusion zone microstructure if electron beam welded Incoloy 903, Scripta Met., 26: 545 (1992).CrossRefGoogle Scholar
  8. 8.
    S.C. Ernst, W.A. Baeslack III, and J.C. Lippold, Weldability of high strength, low-expansion superalloys, Weld. Res. Sup.,. Oct. 1989: 418s.Google Scholar
  9. 9.
    D.J. O’Lone,“Welding of High Strength Structural Materials,” M.S. Thesis, MIT (1992).Google Scholar
  10. 10.
    C.H. Jang, Unpublished research at MIT, (1991–1993).Google Scholar
  11. 11.
    K.E. Easterling, Solidification microstructure of fusion welds, Mat. Sci. Eng., 65: 191 (1984).CrossRefGoogle Scholar
  12. 12.
    M.G. Dawes, Contemporary measurements of weld metal fracture toughness, Welding J., Dec. 1976: 1052.Google Scholar
  13. 13.
    L.A. James, Fatigue-crack growth in Inconel 718 weldments at elevated temperatures. Weld. Res. Sup.., Jan. 1978: 17s.Google Scholar
  14. 14.
    W.J. Mills, Fracture toughness of thermally aged alloy 718 weld metal, Weld. Res. Sup., Apr. 1987: 113s.Google Scholar
  15. 15.
    M.C. Flemings, “Solidification Processing,” McGraw Hill, New York (1974).Google Scholar
  16. 16.
    T. Sawai, Y. Ueshima, and S. Mizoguchi, Microsegregation and precipitation behavior during solidification in Ni-base superalloy, ISIJ International, 30: 520 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. H. Jang
    • 1
  • I. S. Hwang
    • 2
  • R. G. Ballinger
    • 1
  • M. M Steeves
    • 3
  1. 1.Department of Nuclear EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Plasma Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations