Magnetic Properties of Melt-Processed YBa2Cu3O7-δ Crystals

  • Seiki Takebayashi
  • Masamoto Tanaka
  • Misao Hashimoto
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


The critical current of melt-grown Y-Ba-Cu-O materials has been investigated by magnetic measurements. The melt-grown YBa2Cu3O7-δ crystals are c-axis oriented and have no high-angle grain boundaries. The size of Y2BaCuO5 inclusions is reduced by the addition of a small amount of Pt and by the increase in the content of Y2BaCuO5 phase. The critical current density of the materials is improved by the reduction of the size. Some Y2BaCuO5 precipitates in Pt-added samples are needle shaped. Some materials show enhancement of the critical current density at medium external fields. The peak is depressed by the oxygen annealing of the materials. The peak field depends on the temperature. These samples don’t show any unusual enhancement of magnetic relaxation around the peak field, as reported for Bi2Sr2CaCuO8 single crystals.


Critical Current Density Peak Effect Flowing Oxygen Seed Crystal Magnetic Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Dacis, R.B. van Dover, G.W. Kammlott, R.W. Fastnacht and H.D. Keith, Appl. Phys. Lett. 52: 2074 (1988).CrossRefGoogle Scholar
  2. 2.
    M. Morita, K. Miyamoto, K. Doi, M. Murakami, K. Sawano and S. Matsuda, Physica C 172: 383 (1990).CrossRefGoogle Scholar
  3. 3.
    N. Ogawa, I. Hirabayashi and S. Tanaka, Physica C 177: 101 (1991).CrossRefGoogle Scholar
  4. 4.
    M. Morita, M. Tanaka, S. Takebayashi, K. Kimura, K. Miyamoto and K. Sawano, Jpn. J. Appl. Phys. 30: L813 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Morita, S. Takebayashi, M. Tanaka, K. Kimura, K. Miyamoto and K. Sawano, “Advances in Superconductivity BI”, Springer-Verlag, Tokyo, 732 (1991).Google Scholar
  6. 6.
    E.J. Kramer, J. Appl. Phys. 44: 1360 (1973).CrossRefGoogle Scholar
  7. 7.
    J.D. Livingston, Appl. Phys. Lett. 8: 319 (1966).CrossRefGoogle Scholar
  8. 8.
    A.M. Campbell and J.E. Evette, Adv. Phys. 21: 199 (1972).CrossRefGoogle Scholar
  9. 9.
    M. Daeumlin, J.M. Seuntjens and D.C. Larbalestier, Nature 346: 332 (1990).CrossRefGoogle Scholar
  10. 10.
    T. Kimura, K. Kishio, T. Kobayashi, Y.Nakayama, N. Motohita, K. Kitazawa and K Yamafuji, Physica C 192: 247 (1992).CrossRefGoogle Scholar
  11. 11.
    N. Chikumoto, M. Konczykowski, N. Motohira, K. Kishio and K. Kitazawa, Physica C 185–189: 2201 (1991).Google Scholar
  12. 12.
    V.N. Kopylov, I.F. Shegolev and T.G. Togonidze, Physica C 162–164: 1143 (1989).Google Scholar
  13. 13.
    R. S. Roth, K.L. Davis and J.R. Dinnis, Adv. Ceram. Mater 2:303 (1987); A.M. Gadalla, P. Kongkachuichay and T. Hegg, Aiche Symposium Series 88: 96 (1992).Google Scholar
  14. 14.
    C.P. Bean, Phys. Rev. Lett. 8: 250 (1962).CrossRefGoogle Scholar
  15. 15.
    P.W. Anderson and Y.B. Kim, Rev. Mod. Phys. 36: 39 (1964).CrossRefGoogle Scholar
  16. 16.
    T. Matsushita, E.S. Otabe, B. Ni and K. Kimura, Jpn. J. Appl. Phys. 30: L342 (1991).CrossRefGoogle Scholar
  17. 17.
    A.A. Zhukov, V.V. Moshchalkov, V.V. Metlushko, G.T. Karapetrov, V.I. Voronkova, V.K. Yanovskii and V.D. Kuznetsov, Physica C 185–189: 2431 (1991).Google Scholar
  18. 18.
    T. Tamegai, “Advances in Superconductivity V”, Springer-Verlag, Tokyo, 507 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Seiki Takebayashi
    • 1
  • Masamoto Tanaka
    • 1
  • Misao Hashimoto
    • 1
  1. 1.Advanced Materials & Technology Research LaboratoriesNippon Steel CorporationKawasaki 211Japan

Personalised recommendations