Skip to main content

Small Specimens and New Testing Techniques for Fiber Reinforced Plastics in the Crack Opening Mode (Mode I) and in the Shear Mode (Mode II)

  • Chapter
Advances in Cryogenic Engineering Materials

Abstract

Newly developed testing techniques and evaluation procedures for the fracture mechanical characterization of fiber reinforced plastics (FRPs) based on the fracture energy concept are presented. The splitting (mode I) as well as the intralaminar shear test (mode II)are experimentally simple; the loading device and the sample geometries are small and well suited for measurements at low temperatures on both unirradiated and irradiated samples. We obtain from these tests load versus displacement curves, which contain all the information needed to characterize the fracture behavior of the materials with subsequent numerical calculations. In addition, special attention was paid to “scaling” experiments, in order to investigate the influence of the sample geometries on the measured mechanical quantities and to achieve small sample dimensions, which are needed, e.g., for irradiation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Weber and E.K. Tschegg, Test program for mechanical strength measurements on fiber reinforced plastics exposed to radiation environments, Adv. Cryog. Eng. 36: 863 (1990).

    Google Scholar 

  2. S. Hashemi, A.J. Kinloch, and J.G. Williams, Mechanics and mechanisms of delamination in a poly(ether sulphone)-fibre composite, Comp. Sci. Tech. 37: 429 (1990).

    Article  CAS  Google Scholar 

  3. G.M. Newaz and J. Ahmad, A simple technique for measuring mode I delamination energy release rate in polymeric composites, Eng. Fract. Mech. 33: 541 (1989).

    Article  Google Scholar 

  4. A.C. Garg, Intralaminar and interlaminar fracture in graphite/epoxy laminates, Eng. Fract. Mech. 23: 719 (1986).

    Article  Google Scholar 

  5. P.K. Sarkarand and S.K. Maiti, Prediction of mode I fracture toughness of a laminated fiber composite from matrix fracture toughness of the basic layer, Eng. Fract. Mech. 38: 71 (1991).

    Article  Google Scholar 

  6. H. Lau and R.E. Rowlands, Interlaminar fracture and AE studies of composites at RT and 77 K, Adv. Cryog. Eng. 36: 949 (1990).

    CAS  Google Scholar 

  7. S. Nishijima, T. Okada, T. Hirokawa, J. Yasuda, and Y. Iwasaki, Radiation damage of organic composite material for fusion magnet, Cryogenics 31: 273 (1991).

    Article  CAS  Google Scholar 

  8. S. Egusa, Anisotropy of radiation-induced degredation in mechanical properties of fabric-reinforced polymer-matrix composites, J. Mat. Sci. 25: 1863 (1990).

    Article  CAS  Google Scholar 

  9. S. Hashemi, A.J. Kinloch, and J.G. Williams, The analysis of interlaminar fracture in uniaxial fibre-polymer composites, Proc. R . Soc. Lond. A 427: 173 (1990).

    Google Scholar 

  10. D.F. Adams and D.E. Walrath, Iosipescu shear properties of SMC composites materials, Composite materials: Testing and Design (Sixth Conference). ASTM STP 787, American Soc. for Testing and Materials, 19 (1982).

    Google Scholar 

  11. J.A. Barnes, M. Kumosa, and D. Hull, Theoretical and experimental evaluation of the Iosipescu shear test, Comp. Sci. Tech. 28: 251 (1987).

    Article  CAS  Google Scholar 

  12. G.S. Giare, A. Herold, V. Edwards, and R.R. Newcomb, Fracture toughness of unidirectional graphite fibre reinforced/epoxy composite in mode II (forward shear), using a thin tubular specimen, Eng. Fract. Mech. 30: 531 (1988).

    Article  Google Scholar 

  13. P. Ifju and D. Post, A compact double notched specimen for in-plane shear testing, in Proc.: Spring Conf. Soc. for Exp. Mechanics (Boston, MA), 334 (1989).

    Google Scholar 

  14. H. Lau, H.H. Abdelmohsen, and M.K. Abdelsalam, Testing methods and fracture energy of composites at room and cryogenic temperature Adv. Cryog. Eng. 34: 83 (1988).

    CAS  Google Scholar 

  15. S.M. Lee, A comparison of fracture toughness of matrix controlled failure modes: Delamination and transverse cracking J. Comp. Mat. 20: 185 (1986).

    Article  CAS  Google Scholar 

  16. A.C. Garg and O. Ishai, Hygrothermal influence on delamination behavior of graphite/epoxy laminates, Eng. Fract. Mech. 22: 413 (1985).

    Article  CAS  Google Scholar 

  17. A.C. Garg and O. Ishai, Characterization of damage initiation and propagation in graphite/epoxy laminates by acoustic emission, Eng. Fract. Mech. 22: 595 (1985).

    Article  CAS  Google Scholar 

  18. E.K. Tschegg, K. Humer, and H.W. Weber, Fracture-mechanical characterization of fiber reinforced plastics in the crack-opening-mode (mode I), Adv. Cryog. Eng. 38A: 387 (1992).

    CAS  Google Scholar 

  19. E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode Ion fibre reinforced plastics, J. Mat. Sci. 28: 2471 (1993).

    Article  CAS  Google Scholar 

  20. Y. Kagawa, E. Nakata, and S. Yoshida, Fracture behavior of SiC matrix composites reinforced with helical tantalum fiber, American Society for Testing and Materials, Philadelphia, PA, ASTM STP 864: 27 (1985).

    Google Scholar 

  21. A. Daimaru, T. Hata, and M. Taya, Work of fracture in metal matrix composites, American Society for Testing and Materials, Philadelphia, PA, ASTM STP 864: 505 (1985).

    Google Scholar 

  22. S.M. Jeng, J.M. Yang, and C.J. Yang, Fracture mechanisms of fiber-reinforced titanium alloy matrix composites, Part III: Toughening behavior, Mat. Sci. Eng. A 138: 181 (1991).

    Google Scholar 

  23. C.G. Aronsson and J. Bäcklund, Tensile fracture of laminates with cracks, J. Comp. Mat. 20: 287 (1986).

    Article  CAS  Google Scholar 

  24. C.G. Aronsson and J. Bäcklund, Damage mechanics analysis of matrix effects in notched laminates, American Society for Testing and Materials, Philadelphia, PA, ASTM STP 907:134 (1986).

    Google Scholar 

  25. A. Hillerborg, Analysis of a single crack, in Proc.: Fracture Mechanics of Concrete, Developments in Civil Engineering, Vol. 7, edited by F. Wittmann, Elsevier Amsterdam, 7:223 (1983).

    Google Scholar 

  26. A. Hillerborg, A theoretical basis of a method to determine the fracture energy GF of concrete, Materiaux et Constructions 18: 25 (1985).

    Google Scholar 

  27. E.K. Tschegg, K. Humer, and H.W. Weber, Shear fracture tests (mode II) on fiber reinforced plastics at room and cryogenic temperatures, Adv. Cryog. Eng. 38A: 355 (1992).

    CAS  Google Scholar 

  28. P.E. Roelfstra, Thesis, Ecole Polytechnique Federale de Lausanne (1989).

    Google Scholar 

  29. J. Watkins, Fracture toughness test for soil-cement samples in mode II, Int. J. Fract. 23: 135 (1983).

    Article  Google Scholar 

  30. J. Davies, C.W.A. Yim, and T.G. Morgan, Determination of fracture parameters of a punch-through shear specimen, Int. J. of Cement Comp. and Lightweight Concrete 9: 33 (1987).

    Article  Google Scholar 

  31. J. Davies, Numerical study of punch-through shear specimen in mode 11 testing for cementitious materials, Int. J. of Cement Comp. and Lightweight Concrete 10: 3 (1988).

    Article  CAS  Google Scholar 

  32. B. Hillemeier, Thesis, University of Karlsruhe (1976).

    Google Scholar 

  33. B. Hillemeier and H.K. Hilsdorf, Fracture mechanics studies on concrete compounds, Cement and Concrete Research 7: 523 (1977).

    Article  Google Scholar 

  34. E.K. Tschegg, Prüfeinrichtung zur Ermittlung von bruchmechanischen Kennwerten sowie hiefür geeignete PrütkÖrper, Austrian Patent 233/86, AT-390328 (1986).

    Google Scholar 

  35. E.K. Tschegg, New equipments for fracture test on concrete, Materials Testing 33: 338 (1991).

    Google Scholar 

  36. P. Zdenek and P. Bazant, Size effect in blunt fracture-concrete, rock, metal, J. Eng. Mech. 110: 518 (1984).

    Article  Google Scholar 

  37. E.K. Tschegg, K. Humer, and H.W. Weber, Influence of test geometry on tensile strength of fiber reinforced plastics at cryogenic temperatures, Cryogenics 31: 312 (1991).

    Article  Google Scholar 

  38. K. Humer, E.K. Tschegg, H.W. Weber, K. Noma, J. Yasuda, and Y. Iwasaki, Specimen size effect on tensile strength of three-dimensionally glass-fabric reinforced plastics at room and cryogenic temperatures, Cryogenics 33: 162 (1993).

    Article  CAS  Google Scholar 

  39. K. Humer, E.K. Tschegg, and H.W. Weber, Specimen size effect and fracture mechanical behavior of fiber reinforced plastics in the crack opening mode (mode I), Cryogenics (ICMC Supplement) 32: 14 (1992).

    Google Scholar 

  40. E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode II on fiber reinforced plastics, J. Mat. Sci.,will be published

    Google Scholar 

  41. K. Humer, E.K. Tschegg, and H.W. Weber, Fracture behavior in mode I and mode II of glass fiber reinforced plastics at room temperature and at 77 K, Cryogenics (ICMC Supplement) 32: 1 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Humer, K., Tschegg, E.K., Weber, H.W. (1994). Small Specimens and New Testing Techniques for Fiber Reinforced Plastics in the Crack Opening Mode (Mode I) and in the Shear Mode (Mode II). In: Reed, R.P., Fickett, F.R., Summers, L.T., Stieg, M. (eds) Advances in Cryogenic Engineering Materials . An International Cryogenic Materials Conference Publication, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9053-5_127

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9053-5_127

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9055-9

  • Online ISBN: 978-1-4757-9053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics