Materials pp 37-44 | Cite as

Microstructural Influence on the Work Hardening of Aluminum-Lithium Alloy 2090 at Cryogenic Temperatures

  • D. Chu
  • C. Tseng
  • J. W. MorrisJr.
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 38)

Abstract

Previous studies indicate that the work hardening characteristics of a Vintage III 2090-T81 12.7-mm (0.5-in.) plate is highly dependent on the through-thickness position.[1,2] This dependency has been linked to two distinctly different microstructures existing as laminates within the plate.[3] An investigation of the two microstructures by both optical and transmission electron microscopy reveal a difference in the distribution of grains and subgrains. It is believed that these factors affect the work hardening characteristics by governing the manner in which slip is transmitted from grain to grain. The findings are positive as they suggest a practical means by which improvements in work hardening can be obtained through modifications of the microstructure at the polygranular level.

Keywords

Work Hardening Transmission Electron Microscopy Study Cryogenic Temperature Subgrain Boundary Boundary Misorientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Chu and J.W. Morris, Jr., Metall. Trans. A to be published Aug 1991.Google Scholar
  2. 2.
    D. Chu: Master’s Thesis, LBL 30170, University of California, Berkeley, CA, Dec. 1990.Google Scholar
  3. 3.
    D. Chu and J.W. Morris, Jr.: in “Light Weight Alloys for Aerospace Applications”, E.W. Lee, ed., TMS, Warrendale, PA, 1991.Google Scholar
  4. 4.
    E.S. Balmuth and R. Schmidt: in Aluminum-Lithium Alloys T.H. Sanders, Jr. and E.A. Starke, Jr. eds., TMS-AIME, New York, NY, 1981, pp. 69–88.Google Scholar
  5. 5.
    G.H. Narayanan, B.L. Wilson, W.E. Quist, and A.L. Wingert: Technical Report No. D6–51411, The Boeing Company, Seattle, WA, Aug. 1982.Google Scholar
  6. 6.
    J. Glazer: Ph.D. Thesis, LBL-27607, University of California, Berkeley, CA, July 1989.Google Scholar
  7. 7.
    W.E. Quist and G.H. Narayanan: in Treatise on Materials Science and Technology: Aluminum Alloys - Contemporary Research and Applications A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Inc., San Diego, CA, 1989, vol. 31, p. 21954.Google Scholar
  8. 8.
    J. Glazer, S.L. Verzasconi, E.N. Dalder, W. Yu, R.A. Emigh, R.O. Ritchie, and J.W. Morris, Jr.: Adv. Cryog. Eng. 1986, vol. 32, pp. 397–404.CrossRefGoogle Scholar
  9. 9.
    R.C. Dorward: Scripta Metall. 1986, vol. 20, pp. 1379–83.CrossRefGoogle Scholar
  10. 10.
    J. Glazer, S.L. Verzasconi, R.R. Sawtell, and J.W. Morris, Jr.: Metall. Trans. A 1987, vol. 18A, pp. 1695–701.Google Scholar
  11. 11.
    D. Webster: Metall. Trans. A 1987, vol.18A, pp. 2181–93.Google Scholar
  12. 12.
    K.T.V. Rao, W. Yu, and R.O. Ritchie: Metall. Trans. A 1989, vol. 20A, pp. 48597.Google Scholar
  13. 13.
    K.T.V. Rao and R.O. Ritchie: Acta Metall. Mater. 1990, vol. 38, pp. 2309–26.Google Scholar
  14. 14.
    D. Yao, D. Chu, and J.W. Morris, Jr.: in Light Weight Alloys for Aerospace Applications E.W. Lee, ed., TMS, Warrendale, PA, 1991.Google Scholar
  15. 15.
    A.H. Cottrell and R.J. Stokes: Proc. Roy. Soc. A 1955, vol. 233, pp. 17–34.CrossRefGoogle Scholar
  16. 16.
    K.V. Jata and E.A. Starke, Jr.: Scripta Metall. 1988, vol. 22, pp. 1553–56.CrossRefGoogle Scholar
  17. 17.
    K. Welpmann, Y.T. Lee, and M. Peters: Mater Sci. and Eng. A 1990, vol. 129, pp. 21–34.CrossRefGoogle Scholar
  18. 18.
    S.A. Vincent: Master’s Thesis, LBL 24443, University of California, Berkeley, CA, Dec. 1987.Google Scholar
  19. 19.
    P.E. Johnson, J.H. Schmitt, S.A. Vincent, and J.W. Morris, Jr.: Scripta Metall. 1990, vol. 24, pp. 1447–52.Google Scholar
  20. 20.
    P.E. Johnson: PhD Thesis, University of California, Berkeley, CA, June 1991.Google Scholar
  21. 21.
    R.J. Bucci, R.C. Malcolm, E.L. Colvin, S.J. Murtha, and R.S. James: Final Report No. NSWC TR 89–106, Aluminum Company of America, Alcoa Center, PA, Sept. 1989.Google Scholar
  22. 22.
    A.K. Vasudèvan, W.G. Fricke, Jr., R.C. Malcolm, R.J. Bucci, M.A. Przystupa, and F. Barlat: Metall. Trans. A 1988, vol. 19A, pp. 731–32.Google Scholar
  23. 23.
    A.K. Vasudèvan, W.G. Fricke, Jr., M.A. Przystupa, and S. Panchanadeeswaran: in 8th Int. Conf. on Textures of Materials J.S. Kallend and G. Gottstein, eds., TMS, Warrendale, PA, 1988, pp. 1071–77.Google Scholar
  24. 24.
    R.J. Rioja, B.A. Cheney, R.S. James, J.T. Staley, and J.A. Bowers: Structure-Property Relationships in Al-Li Alloys: Plate and Sheet Products, Aluminum Corporation of America, Alcoa Center, PA, March 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • D. Chu
    • 1
  • C. Tseng
    • 1
  • J. W. MorrisJr.
    • 1
  1. 1.Center for Advanced Materials, Lawrence Berkeley Laboratory, and Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations