Materials pp 279-284 | Cite as

Alumina Dispersion-Strengthened Copper Alloy Matrix Ti Added Nb3Sn Wire by the Tube Process

  • S. Nakayama
  • S. Murase
  • K. Shimamura
  • N. Aoki
  • N. Shiga
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 38)

Abstract

Filamentary superconducting Nb3Sn wire has become increasingly important as a high-field conductor because of its high upper critical field and critical temperature. It has applications in developing high-field and large magnets such as those used in fusion reactors, hybridmagnet systems, and NMR. Compound Nb3Sn, however, suffers from the disadvantage that its superconducting properties rapidly degrade under tensile and bending stress and strain due to reeling and coiling and due to the electromagnetic force generated when a coil is energized, and under thermal contraction stress upon cooling.

Keywords

Composite Wire High Critical Current Density Tube Process Residual Resistance Ratio Copper Oxide Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Murase, H. Shiraki, M. Koizumi, M. Tanaka, H. Maeda, 0. Horigami, Y. Kamisada, N. Aoki, M. Ichihara, E. Suzuki, T. Ando, Y. Takahashi, M.Nishi, and S. Shimamoto, High-current MF Nb3Sn for Up-grading of the Cluster Test Facility, Proc. of Int’l. Cryo. Mats. Conf., 215 (1982).Google Scholar
  2. 2.
    S. Murase, H. Shiraki, 0. Horigami, M. Koizumi, S. Mine, H. Takeda, and H. Baba, Stress Effects on W/Cu Reinforced Nb3Sn Composite Conductor, in:“Filamentary Al5 Superconductors”, M. Suenaga and A.F. Clark, ed., Plenum Press, New York (1980).Google Scholar
  3. 3.
    K. Noto, N. Konishi, A. Hoshi, K. Watanabe, M. Noguchi, and T. Fukutsuka, A New Reinforcing Stabilizer for Superconducting Wires, Proc. of 9th Int’l Conf. on Magnet Technology, 700 (1985).Google Scholar
  4. 4.
    E. Gregory, L.R. Motowidlo, G.M. Ozeryansky, L.T. Summers, High Strength Nb3Sn Conductors for High Magnetic Field Applications, IEEE Trans. on Magn. MAG-27: 2033 (1991)Google Scholar
  5. 5.
    K. Amano and K. Shimamura, High Conductivity, Alumina Dispersion-Strengthened Copper by a New Process, IEEE Tokyo Section, Denshi Tokyo, 28: 94 (1989).Google Scholar
  6. 6.
    S. Murase, H. Shiraki, M. Tanaka, M. Koizumi, H. Maeda, I. Takano, N. Aoki, M. Ichihara, E. Suzuki, Properties and Performance of the Multifilamentary Nb3Sn with Ti Addition Processed by the Nb Tube Method, IEEE Trans. on Magn., MAG-21: 316 (1985).Google Scholar
  7. 7.
    H. Shiraki, S. Nakayama, M. Tanaka, S. Murase, N. Aoki, M. Ichihara, K. Watanabe, K. Noto, and Y. Muto, High-field Superconducting Properties of Ti Doped Nb3Sn Conductor by the Nb Tube Method, MRS Int’l. Mtg. on Adv. Mats., 6: 43 (1989).Google Scholar
  8. 8.
    K. Inoue, T. Takeuchi, K. Itoh, S. Murase, H. Shiraki, S. Nakayama, T. Fujioka, T. Hamajima, and Y. Sumiyoshi, High-field Superconducting Properties of a 16 T Class (Nb,Ti)3Sn Conductor by the Tube Method, Proc. of 11th Int’l Conf. on Magnet Technology, 932 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • S. Nakayama
    • 1
  • S. Murase
    • 1
  • K. Shimamura
    • 1
  • N. Aoki
    • 2
  • N. Shiga
    • 2
  1. 1.Toshiba R & D CenterKawasaki-ku, Kawasaki City, 210Japan
  2. 2.Showa Electric Wire & Cable Co., Ltd.Kawasaki-ku, Kawasaki City, 210Japan

Personalised recommendations