Cryogenic Superinsulations with Increased Efficiency

  • V. F. Getmanets
  • G. G. Zhun
  • R. S. Mikhalchenko
  • N. P. Pershin
  • A. M. Borisov
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)

Abstract

Methods and results of improvement of SI thermal performances of cryobiological vessels with volume 35 1 are presented. Life — time of the vessel (time of complete boil — off of liquid nitrogen) was increased from 100–120 to 350–370 days by:
  • using new high-effective spacer materials with adsorbents;

  • optimization of SI mounting parameters;

  • selection of design of thermal protection of cryo- vessels and regimes of thermal vacuum treatment of SI materials ensuring elimination of cryocondensation of water vapor in the layers of SI and decreasing compression of insulation;

  • maximum using of the cold of vapors.

Keywords

Thermal Conductivity Radiation Heat Flux National Academy ofSciences Contact Thermal Conductivity Composite Spacer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verkin B.I., Mikhalchenko R.S., Gerzhin A.G. Effect of multilayer insulation thickness on apparent thermal conductivity. Proc. of ICEC-2. Guildford, (1969). P. 123.Google Scholar
  2. 2.
    Mikhalchenko R.S., Getmanets V.F., Pershin N.P., Batozskij Yu. V. Study of heat transfer in multilayer insulations based on composite spacer materials. Cryogenics, 23:309 (1983).CrossRefGoogle Scholar
  3. 3.
    Mikhalchenko R.S., Getmanets V.F., Pershin N.P., Batozskij Yu. V. Theoretical and experimental investigation of radiative — conductive heat transfer in multilayer insulation. Cryogenics, 25: 275 (1985).CrossRefGoogle Scholar
  4. 4.
    Verkin B.I., Mikhalchenko R.S., Getmanets V.F., Mikheev V.A. Application of multilayer insulations in cryogenic engineering and improvement of its efficiency. Proc. of ICEC-10, (1984), p. 529.Google Scholar
  5. 5.
    Mikhalchenko R.S., Getmanets V.F., Pershin N.P., Annikova T.A. New efficient composite superinsulations. Cryogenics, V.32, ICMC Supplement, (1992), p. 60.CrossRefGoogle Scholar
  6. 6.
    Zhun G.G., Getmanets V.F., Mikhalchenko R.S., Sutula V.V., Podolski A.G. High efficiency small cryovessels. Cryogenics, V.32, ICEC Supplement, (1992), p. 199.CrossRefGoogle Scholar
  7. 7.
    Scurlock R.G., Saull B. Development of multilayer insulations with thermal conductivities below 0,1 µW/cm.K. Cryogenics, 16: 303 (1976).CrossRefGoogle Scholar
  8. 8.
    Getmanets V.F., Yurchenko P.N., Dushechkin Yu. A. One — dimensional model of heat transfer in multilayer insulation under radiation heat flux to its layers. Proc. of ICEC 8, Genova, (1980), p. 695.Google Scholar
  9. 9.
    Kurskaja T.A., Mikhalchenko R.S., Getmanets V.F. An effective cryogenic thermal insulation for optical devices and pipelines. Scient.-Technol. J. Eng. Phys., (1995), V.68, N1, p.51.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • V. F. Getmanets
    • 1
  • G. G. Zhun
    • 1
  • R. S. Mikhalchenko
    • 1
  • N. P. Pershin
    • 1
  • A. M. Borisov
    • 1
  1. 1.Special Research & Development Bureau in Cryogenic Technologies of the Institute for Low Temperature Physics & Engineering of the National Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations