Infant Cognitive Psychophysiology

Normal Development and Implications for Abnormal Developmental Outcomes
  • John E. Richards
Part of the Advances in Clinical Child Psychology book series (ACCP, volume 17)


Psychophysiology may be defined as “the study of relations between psychological manipulations and resulting physiological responses, measured in the living organism, to promote understanding of the relation between mental and bodily processes” (Andreassi, 1989). The main impetus of psychophysiology is to relate psychological behavior to underlying physiological systems. Psychophysiology is also the study of parallel relations between psychological behavior and physiological systems. Psychophysiological research typically uses noninvasive recording methods and human subjects. Other scientific areas, such as physiological psychology, psychobiology, and behavioral neuroscience study physiological-psychological relations. These fields use more invasive physiological measures and, as a result, use animal models rather than human subjects in the study of behavior.


Recognition Memory Sustained Attention Respiratory Sinus Arrhythmia Familiarization Phase Brainstem Auditory Evoke Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreassi, J. L. (1989). Psychophysiology. Hillsdale, NJ: Erlbaum.Google Scholar
  2. Bell, M.A., & Fox, N.A. (1992). The relations between frontal brain electrical activity and cognitive development during infancy. Child Development, 63, 1142–1163.PubMedCrossRefGoogle Scholar
  3. Berg, W. K., & Berg, K. M. (1987). Psychophysiological development in infancy: State, startle, and attention. In J. D. Osofsky (Ed.), Handbook of infant development (pp. 238–317). New York: Wiley.Google Scholar
  4. Bert, W. K., & Donahue, R. L. (1992). Anticipatory processes in infants: Cardiac components. In B. A. Campbell, H. Hayne, & R. Richardson (Eds.), Attention and information processing in infants and adults (pp. 61–80). Hillsdale, N. J.: Erlbaum.Google Scholar
  5. Casey, B. J., & Richards, J. E. (1988). Sustained visual attention in young infants measured with an adapted version of the visual preference paradigm. Child Development, 59, 1514–1521.PubMedCrossRefGoogle Scholar
  6. Courchesne, E. (1977). Event-related brain potentials: Comparison between children and adults. Science, 197, 589–592.PubMedCrossRefGoogle Scholar
  7. Courchesne, E. (1978). Neurophysiological correlates of cognitive development: Changes in long-latency event-related potentials from childhood to adulthood. Electroencephalography and Clinical Neurophysiology, 45, 468–482.PubMedCrossRefGoogle Scholar
  8. Courchesne, E. (1988). Physioanatomical considerations in Down’s syndrome. In L. Nadel (Eds.), The psychobiology of Down’s syndrome. Issues in the biology of language and cognition. (pp. 291–313). Cambridge, MA: MIT Press.Google Scholar
  9. Courchesne, E. (1990). Chronology of postnatal human brain development: Event-related potential, positron emission tomography, myelinogenesis, and synaptogenesis studies. In J. W. Rohrbaugh, R. Parasuraman, (Eds.), Event-related brain potentials: Basic issues and applications, (pp. 210–241). New York: Oxford University Press.Google Scholar
  10. Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52, 804–811.PubMedCrossRefGoogle Scholar
  11. Courchesne, E., & Yeung-Courchesne, R. (1988). Event-related brain potentials. In M. Rutter, A. H. Tuma, I. S. Lann (Eds.), Assessment and diagnosis in child psychopathology. (pp. 264–299). New York: Guilford Press.Google Scholar
  12. Fagan, J. (1992). Intelligence: A theoretical viewpoint. Current Directions in Psychological Science, 1, 82–86.CrossRefGoogle Scholar
  13. Finlay, D., & Ivinkis, A. (1987). Cardiac change responses and attentional mechanisms in infants. In B. E. McKenzie & R. H. Day (Eds.), Perceptual development in early infancy (pp. 45–63). Hillsdale, NJ: Erlbaum.Google Scholar
  14. Fox, N. A. (1983). Maturation of autonomic control in preterm infants. Developmental Psychobiology, 16, 495–504.PubMedCrossRefGoogle Scholar
  15. Fox, N. A. (1989). Heart-rate variability and behavioral reactivity: Individual differences in autonomic patterning and their relation to infant and child temperament. In J. S. Reznick (Ed.), Perspectives on behavioral inhibition, (pp. 177–195). Chicago: University of Chicago Press.Google Scholar
  16. Fox, N. A., & Fitzgerald, H. E. (1990). Autonomic function in infancy. Merrill Palmer Quarterly, 36, 27–51.Google Scholar
  17. Fox, N.A., & Lewis, M. (1983). Cardiac response to speech sounds in preterm infants: Effects of postnatal illness at three months. Psychophysiology, 20, 481–488.PubMedCrossRefGoogle Scholar
  18. Fox, N. A., & Porges, S. W. (1985). The relation between neonatal heart period patterns and developmental outcome. Child Development, 56, 28–37.PubMedCrossRefGoogle Scholar
  19. Graham, F. K. (1979). Distinguishing among orienting, defense, and startle reflexes. In H. D. Kimmel, E. H. van Olst & J. F. Orlebeke (Eds.), The orienting reflex in humans (pp. 137–167), Hillsdale, N. J.: Erlbaum.Google Scholar
  20. Graham, F. K., Anthony, B. J., & Ziegler, B. L. (1983). The orienting response and developmental processes. In D. Siddle (Ed.), Orienting and habituation: Perspectives in human research (pp. 371–430), Sussex, England: Wiley.Google Scholar
  21. Graham, F. K., & Clifton, R. K. (1966). Heart-rate change as a component of the orienting response. Psychological Bulletin, 65, 305–320.PubMedCrossRefGoogle Scholar
  22. Gunderson, V. M., Grant, K. S., Burbacher, T. M., Fagan, J. F., & Mottet, N. K. (1986). The effect of low-level prenatal methylmercury exposure on visual recognition memory in infant crab-eating macaques. Child Development, 57, 1076–1083.PubMedCrossRefGoogle Scholar
  23. Hoffman, M. J., Salapatek, P., & Kuskowski, M. (1981). Evidence for visual memory in the averaged and single trial evoked potentials in human infants. Infant Behavior and Development, 4, 401–421.CrossRefGoogle Scholar
  24. Izard, C. E., Porges, S. W., Simons, R. F., Haynes, O. M., Hyde, C., Pavisi, M., & Cohen, B. (1991). Infant cardiac activity: Developmental changes and relations with attachment. Developmental Psychology, 27, 432–439.CrossRefGoogle Scholar
  25. Jacobson, S. W., Fein, G. G., Jacobson, J. L., Schwartz, P. M., & Dowler, J. K. (1985). The effect of intrauterine PCB exposure on visual recognition memory. Child Development, 56, 853–860.PubMedCrossRefGoogle Scholar
  26. Jasper, H. H. (1958). The 10–20 electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.Google Scholar
  27. Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2, 81–95.CrossRefGoogle Scholar
  28. Karrer, R., & Ackles, P. K. (1987). Visual event-related potentials of infants during a modified oddball procedure. In R. Johnson, J. W. Rohrbaugh, & R. Parasuraman (Eds.), Current trends in event-related potential research (pp. 603–608). Amsterdam: Elsevier.Google Scholar
  29. Karrer, R., & Ackles, P. K. (1988). Brain organization and perceptual/cognitive development in normal and Down’s syndrome infants: A research program. In P. Vietze & H. G. Vaughan, Jr. (Eds.), The early identification of infants with developmental disabilities (pp. 210–234). Philadelphia: Grune & Stratton.Google Scholar
  30. Kero, P. (1973). Heart rate variation in infants with the respiratory distress syndrome. Acta Paediatrica Scandanavica, Supplement No. 250.Google Scholar
  31. Kurtzberg, D. (1982). Event-related potentials in the evaluation of high-risk infants. Annals of the New York Academy of Sciences, 388, 557–571.PubMedCrossRefGoogle Scholar
  32. Kurtzberg, D., Vaughan, H. G., Courchesne, E., Friedman, D., Harter, M. R., & Putnam, L. E. (1984). Developmental aspects of event-related potentials. Annals of the New York Academy of Sciences, 425, 300–318.PubMedCrossRefGoogle Scholar
  33. Kurtzberg, D., Vaughan, H. G., & Novak, G. P. (1986). Discriminative brain responses to speech sounds in the newborn high-risk infant. In V. Gallai (Ed.), Maturation of the CNS and evoked potentials (pp. 253–259). Amsterdam: Elsevier.Google Scholar
  34. Linnemeyer, S. A., & Porges, S. W. (1986). Recognition memory and cardiac vagal tone in 6-month-old infants. Infant Behavior and Development, 9, 43–56.CrossRefGoogle Scholar
  35. Mclsaac, H., & Polich, J. (1992). Comparison of infant and adult P300 from auditory stimuli. Journal of Experimental Child Psychology, 53, 115–128.CrossRefGoogle Scholar
  36. Nelson, C. A. (1993). Neural correlates of recognition memory in the first postnatal year of life. In G. Dawson & K. Fischer (Eds.), Human behavior and the developing brain, (pp. 269–313). New York: Guilford.Google Scholar
  37. Nelson, C. A., & Collins, P. F. (1991). Event-related potential and looking-time analysis of infants’ responses to familiar and novel events: Implications for visual recognition memory. Developmental Psychology, 27, 50–58.CrossRefGoogle Scholar
  38. Nelson, C. A., & Collins, P. F. (1992). Neural and behavioral correlates of visual recognition memory in 4- and 8-month-old infants. Brain and Cognition, 19, 105–121.PubMedCrossRefGoogle Scholar
  39. Nelson, C. A., & deRegnier, R. A. (1992). Neural correlates of attention and memory in the first year of life. Developmental Neuropsychology, 8, 119–134.CrossRefGoogle Scholar
  40. Nelson, C. A., Ellis, A. E., Collins, P. F., & Lang, S. F. (1990). Infants’ neuroelectric responses to missing stimuli: Can missing stimuli be novel stimuli? Developmental Neuropsychology, 6, 339–349.CrossRefGoogle Scholar
  41. Nelson, C. A., Henschel, M., & Collins, P. F. (1993). Neural correlates of cross-modal recognition memory by 8-month-old human infants. Developmental Psychology, 29, 411–420.CrossRefGoogle Scholar
  42. Nelson, C. A., & Salapatek, P. (1986). Electrophysiological correlates of infant recognition memory. Child Development, 57, 1483–1497.PubMedCrossRefGoogle Scholar
  43. Porges, S. W. (1976). Peripheral and neurochemical parallels of psychopathology: A psychophysiological model relating autonomic imbalance in hyperactivity, psychopathology, and autism. In H. Reese (Ed.), Advances in child development and behavior (Vol. 11, pp. 35–65). New York: Academic Press.Google Scholar
  44. Porges, S. W. (1991). Vagal tone: An autonomic mediator of affect. In J. Garber, K. A. Dodge (Eds.), The development of emotion regulation and dysregulation. (pp. 111–128). New York: Cambridge University Press.CrossRefGoogle Scholar
  45. Porges, S. W. (1992). Autonomic regulation and attention. In B. A. Campbell, H. Hayne, & R. Richardson (Eds.), Attention and information processing in infants and adults: Perspectives from human and animal research, (pp. 201–223). Hillsdale, NJ: Erlbaum.Google Scholar
  46. Porges, S. W., & Fox, N. A. (1986). Developmental psychophysiology. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 611–625). New York: Guilford.Google Scholar
  47. Richards, J. E. (1985). The development of sustained visual attention in infants from 14 to 26 weeks of age. Psychophysiology, 22, 409–416.PubMedCrossRefGoogle Scholar
  48. Richards, J. E. (1987). Infant visual sustained attention and respiratory sinus arrhythmia. Child Development, 58, 485–496.CrossRefGoogle Scholar
  49. Richards, J. E. (1988). Heart rate changes and heart rate rhythms, and infant visual sustained attention. In P. K. Ackles, J. R. Jennings & M. G. H. Coles (Eds.), Advances in psychophysiology (Vol. 3. pp. 189–221). Greenwich, CT: JAI Press.Google Scholar
  50. Richards, J. E. (1989a). Development and stability in visual sustained attention in 14-, 20-, and 26-week old infants. Psychophysiology, 26, 422–430.PubMedCrossRefGoogle Scholar
  51. Richards, J. E. (1989b). Sustained visual attention in 8-week-old infants. Infant Behavior and Development, 12, 425–436.CrossRefGoogle Scholar
  52. Richards, J. E. (1991). Infant eye movements during peripheral visual stimulus localization as a function of central stimulus attention status. Psychophysiology, 28, S4. (abstract)CrossRefGoogle Scholar
  53. Richards, J. E. (1994). Baseline respiratory sinus arrhythmia and heart-rate responses during sustained visual attention in preterm infants from 3 to 6 months of age. Psychophysiology, 30, 235–243.CrossRefGoogle Scholar
  54. Richards, J. E., & Cameron, D. (1989). Infant Heart-rate variability and behavioral developmental status. Infant Behavior and Development, 12, 45–58.CrossRefGoogle Scholar
  55. Richards, J. E., & Casey, B. J. (1990). Infant visual recognition memory performance as a function of heart-rate defined phases of attention. Psychophysiology, 27, S58. (abstract)Google Scholar
  56. Richards, J. E., & Casey, B. J. (1991). Heart-rate variability during attention phases in young infants. Psychophysiology, 28, 43–53.PubMedCrossRefGoogle Scholar
  57. Richards, J. E., & Casey, B. J. (1992). Development of sustained visual attention in the human infant. In B. A. Campbell, H. Hayne, & R. Richardson (Eds.), Attention and information processing in infants and adults: Perspectives from human and animal research, (pp. 30–60). Hillsdale, NJ: Erlbaum.Google Scholar
  58. Rother, M., Zwiener, U., Eiselt, M., Witte, H., Zwacka, G., & Frenzel, T. (1987). Differentiation of healthy newborns and newborns-at-risk by spectral analysis of heart rate fluctuations and respiratory movements. Early Human Development, 15, 349–363.PubMedCrossRefGoogle Scholar
  59. Salapatek, P., & Nelson, C. A. (1985). Event-related potentials and visual development. In. G. Gottlieb & N. A. Krasnegor (Eds.), The measurement of audition and vision in the first year of postnatal life: a methodological overview, (pp. 419–453). Norwood, NJ: Ablex.Google Scholar
  60. Scherg, M. (1990). Fundamentals of dipole source potential analysis. In F. Grandori, M. Hoke, & G. L. Romani (Eds.), Auditory evoked magnetic fields and potentials (pp. 40–69). Karger, Basel.Google Scholar
  61. Scherg, M., & Picton, T. W. (1991). Separation and identification of event-related potential components by brain electrical source analysis. In C. H. M. Brunia, G. Mulder, & M. N. Verbaten (Eds.), Event-related brain research (pp. 24–37). Amsterdam: Elsevier.Google Scholar
  62. Sokolov, E. N. (1963). Perception and the conditioned reflex. New York: Macmillan.Google Scholar
  63. Thompson, L. A., Fagan, J. F., & Fulkner, D. W. (1991). Longitudinal prediction of specific cognitive abilities from infant novelty preference. Child Development, 62, 530–538.PubMedCrossRefGoogle Scholar
  64. Vaughan, H. G., & Kurtzberg, D. (1989). Electrophysiological indices of normal and aberrant cortical maturation. In P. Kellaway & J. L. Noebels (Eds.), Problems and concepts in developmental neurophysiology (pp. 263–287). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  65. Vaughan, H. G., & Kurtzberg, D. (1992). Electrophysiologic indices of human brain maturation and cognitive development. In M. R. Gunnar, C. A. Nelson (Eds.), Developmental behavioral neuroscience. The Minnesota Symposia on Child Psychology (Vol. 24, pp. 1–36). Hillsdale, NJ: Erlbaum.Google Scholar
  66. Von Bargen, D. M. Infant heart rate: A review of research and methodology. Merrill-Palmer Quarterly, 29, 115–149.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John E. Richards
    • 1
  1. 1.Department of PsychologyUniversity of South CarolinaColumbiaUSA

Personalised recommendations