Stable Liposomes Formed from Archaeal Ether Lipids

  • Christian G. Choquet
  • Girishchandra B. Patel
  • G. Dennis Sprott
  • Terry J. Beveridge
Part of the NATO ASI Series book series (NSSA, volume 252)


Liposomes have application in serving as a support, or matrix, to form two dimensional crystals from those proteins which normally interact with the cytoplasmic membrane (Wingfield et al., 1979). This interaction includes membrane proteins that are largely embedded within the lipid bilayer, others with relatively more surface area exposed, and surface proteins which interact either via a single transmembrane strand or via a covalently linked lipid (Andreas et al., 1992). Recently, Andreas et al. demonstrated the two-dimensional crystallization of a solubilized surface protein from Comamonas acidovorans on lipid vesicles.


Pressure Extrusion Pore Filter Extreme Halophile Multilamellar Structure Polar Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, P., Engelhardt, H., Jakubowski, U., and Baumeister, W., 1992, Two-dimensional crystallization of a bacterial surface protein on lipid vesicles under controlled conditions, Biophys. J. 61: 172.CrossRefGoogle Scholar
  2. Baumeister, W., Wildhaber, I., and Phipps, B.M., 1989, Principles of organization in eubacterial and archaebacterial surface proteins, Can. J. Microbiol. 35: 215.Google Scholar
  3. Beveridge, T.J., Choquet, C.G., Patel, G.B., and Sprott, G.D., 1993, Freeze-fracture planes of methanogen membranes correlate with the content of tetraether lipids, J. Bacterial. 175: in press.Google Scholar
  4. Chen, J.S., Barton, P.G., Brown, D., and Kates, M., 1974, Osmometric and microscopic studies on bilayers of polar lipids from the extreme halophile, Halobacterium cutirubrum, Biochim. Biophys. Acta 352: 202.PubMedCrossRefGoogle Scholar
  5. Choquet, C.G., Patel, G.B., Beveridge, T.J., and Sprott, G.D., 1992, Formation of unilamellar liposomes from total polar lipid extracts of methanogens, Appl. Environ. Microbiol. 58: 2894.PubMedGoogle Scholar
  6. Comita, P.B., Gagosian, R.B., Pang, H., and Costello, C.E., 1984, Structural elucidation of a unique, macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii, J. Biol. Chem. 259: 15234.PubMedGoogle Scholar
  7. De Rosa, M., and Gambacorta, A., 1988, The lipids of archaebacteria, Prog. Lipid Res. 27:153.PubMedCrossRefGoogle Scholar
  8. Ferrante, G., Ekiel, I., Patel, G.B., and Sprott, G.D., 1988, A novel core lipid isolated from the aceticlastic methanogen, Methanothrix concilii GP6, Biochim. Biophys. Acta 963: 173.CrossRefGoogle Scholar
  9. Kates, M., 1990, Glyco-, phosphoglyco-and sulfoglycoglycerolipids of bacteria, in: “Glycolipids, Phosphoglycolipids, and Sulfoglycolipids”, M. Kates, ed., Plenum Press, New York.Google Scholar
  10. Lelkes, P.I., Goldenberg, D., Gliozzi, A., De Rosa, M., Gambacorta, A., and Miller, I.R., 1983, Vesicles from mixtures of bipolar archaebacterial lipids with egg phosphatidylcholine, Biochim. Biophy. Acta 33: 337.Google Scholar
  11. Lo, S.L, and Chang, E.L, 1990, Purification and characterization of a liposomalforming tetraether lipid fraction, Biochem. Biophys. Res. Commun. 167: 238.PubMedCrossRefGoogle Scholar
  12. MacDonald, R.C., MacDonald, R.I., Menco, B.P.M., Takeshita, K., Subbarao, N.K., and Hu, L, 1991, Small-volume extrusion apparatus for preparation of large, unilamellar vesicles, Biochim. Biophys. Acta 1061: 297.PubMedCrossRefGoogle Scholar
  13. Morth, S., and Tindall, B.J., 1985, Variation of polar lipid composition within haloalkaliphilic archaebacteria, System. Appl. Microbio1.6:247.Google Scholar
  14. Ring, K., Henkel, B., Valenteijn, A., and Gutermann, R., 1986, Studies on the permeability and stability of liposomes derived from a membrane spanning bipolar archaebacterial tetraether lipid, in: “Liposomes as Drug Carriers”, K.H. Schmidt, ed., Georg Thieme Verlag, Stuttgart.Google Scholar
  15. Sprott, G.D., 1992, Structures of archaebacterial membrane lipids, J. Bioenergetics Biomembr. 24: 555.CrossRefGoogle Scholar
  16. Sprott, G.D., Meloche, M., and Richards, J.C., 1991, Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschü grown at different temperatures, J. Bacterial. 173: 3907.Google Scholar
  17. Sprott, G.D., Ekiel, I., and Dicaire, C., 1990, Novel, acid-labile, hydroxydiether lipid cores in methanogenic bacteria, J. Biol. Chem. 265: 13735.PubMedGoogle Scholar
  18. Wingfield, P., Mad, T., Leonard, K., and Weiss, H., 1979, Membrane crystals of ubiquinone:cytochrome c reductase from Neurospora mitochondria, Nature 280: 696.PubMedCrossRefGoogle Scholar
  19. Woese, C.A., Kandler, O., and Wheelis, M.L., 1990, Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA 87: 4576.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Christian G. Choquet
    • 1
  • Girishchandra B. Patel
    • 1
  • G. Dennis Sprott
    • 1
  • Terry J. Beveridge
    • 2
  1. 1.Institute for Biological SciencesNational Research Council of CanadaOttawaCanada
  2. 2.Department of Microbiology, College of Biological ScienceUniversity of GuelphGuelphCanada

Personalised recommendations