Skip to main content

Nonlinear System Identification of Hippocampal Neurons

  • Chapter
Advanced Methods of Physiological System Modeling

Abstract

Although the passive electrical properties of neural membranes are well modeled by linear résistive-capacitive (RC) ladder networks, they do not account for the nonlinear current-voltage (I–V) relations which are observed in most neural cells. Typically the I–V relations of neuronal membranes are obtained using a voltage-clamp paradigm where it is, generally difficult to maintain a uniform transmembrane voltage. This chapter describes a white-noise identification scheme which identifies both the dendritic RC ladder networks and the somatic nonlinear I–V relations of hippocampal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardakjian, B.L. (1990) Characterization of passive electrical properties of excitable cells using optimization methods. Med. Prog, through Tech., 16:11–17.

    Google Scholar 

  2. Charalambous, C. (1977) Nonlinear least pth optimization and nonlinear programming. Math. Prog., 12:195–225.

    Article  MathSciNet  MATH  Google Scholar 

  3. D’Aguanno, A., Bardakjian, B.L. and Carlen, P.L. (1986) Passive neuronal membrane parameters: Comparison of optimization and peeling methods. IEEE Trans. Biomed. Eng., 33:1188–1196.

    Article  Google Scholar 

  4. D’Aguanno, A., Bardakjian, B.L. and Carlen, P.L. (1989) A system model for investigating passive electrical properties of neurons. Biophys. J., 55:1169–1182.

    Article  Google Scholar 

  5. Durand, D. (1984) The shunt cable model for neurons. Biophys. J., 46:645–653.

    Article  Google Scholar 

  6. Fletcher, R. (1970) A new approach to variable metric algorithms. Comput. J., 13:317–322.

    Article  MATH  Google Scholar 

  7. Fu, P., Bardakjian, B.L. and Carlen, PL. (1989) Computation of the passive electrical parameters of neurons using a system model. IEEE Trans. Biomed. Eng., BME-3655–64.

    Google Scholar 

  8. Grundfest, H. (1972) N-shaped characteristics in living membranes, In: Perspectives in Membrane Biophysics, Ch. 3, Agin, D.P. (ed.), Gordon & Breach Publ., Cooper Station, New York, pp. 37–63.

    Google Scholar 

  9. Hamill, O.P., Marty, A., Neher, B., Sakmann, B. and Sigworth, F.J. (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Archives, 391:85–100.

    Article  Google Scholar 

  10. Hille, B. (1992) Ionic Channels of Excitable Membranes, Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  11. Hindmarsh, A.C. (1983) Odepack, a systematized collection of ODE solvers, In: Scientific Computing, Stepleman, R.S. et al., eds., North-Holland, pp. 55–64.

    Google Scholar 

  12. Jack, J.J.B., Noble, D., and Tsien, R.W. (1983) Electric Current Flow in Excitable Cells, Clarendon Press, Oxford, England.

    Google Scholar 

  13. Korenberg, M.J. (1988) Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm. Annals of Biomed. Eng., 16:123–142.

    Article  Google Scholar 

  14. Marmarelis, P.Z. and Marmarelis V.Z. (1978) Analysis of Physiological Systems: The White-Noise Approach, Plenum Press, New York, New York.

    Book  Google Scholar 

  15. Rail, W. (1969) Time constants and electronic length of membrane cylinders and neurons. Biophys. J., 9:1483–1508.

    Article  Google Scholar 

  16. Rail, W. (1977) Core Conductor Theory and Cable Properties of Neurons, In: Handbook of Physiology: The Nervous System I, Chapter 3, American Physiological Society.

    Google Scholar 

  17. Wiener, N. (1958) Nonlinear Problems in Random Theory, John Wiley & Sons, New York, New York.

    MATH  Google Scholar 

  18. Wolfram, S. (1991) Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bardakjian, B.L., Wright, W.N., Valiante, T.A., Carlen, P.L. (1994). Nonlinear System Identification of Hippocampal Neurons. In: Marmarelis, V.Z. (eds) Advanced Methods of Physiological System Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9024-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9024-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9026-9

  • Online ISBN: 978-1-4757-9024-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics