Advertisement

Identification of Multiple-Input Nonlinear Systems Using Non-White Test Signals

  • David T. Westwick
  • Robert E. Kearney

Abstract

The parallel cascade method (Korenberg, 1982, 1991; Palm 1979) provides an elegant means of estimating the Volterra kernels of a nonlinear system. Korenberg (1991) demonstrated methods for producing the individual paths in this parallel array that require relatively few calculations, and are hence practical for use under a variety of conditions. In this paper, we propose alternative methods for determining the paths in a parallel cascade array. Our methods prove to be more robust in the presence of output noise, at the expense of slightly slower convergence under low noise conditions.

Keywords

Minimum Mean Square Error Volterra Series Volterra Kernel Wiener Kernel Eigenvector Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billings, S.A. and Fakhouri, S.Y. (1982) Identification of systems containing linear dynamic and static nonlinear elements. Automatica., 18:15–26.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    French, A.S. (1976) Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain. Biol. Cybern., 24:111–119.zbMATHCrossRefGoogle Scholar
  3. 3.
    Golub, G.H. and van Loan, C.F. (1983) Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland.zbMATHGoogle Scholar
  4. 4.
    Hunter, I.W. and Kearney, R.E. (1983) Two-sided linear filter identification. Med. Biol. Eng. Comput., 21:203–209.CrossRefGoogle Scholar
  5. 5.
    Hunter, I.W. and Korenberg, M.J. (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern., 55:135–144.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Korenberg, M.J. (1973) Crosscorrelation analysis of neural cascades. Proc. 10th Ann. Rocky Mountain Bioeng. Symp., pp. 47–52.Google Scholar
  7. 7.
    Korenberg, M.J. and Hunter, I.W. (1986) The identification of nonlinear biological systems: LNL cascade models. Biol. Cybern., 55:125–134.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Korenberg, M.J. and Hunter, I.W. (1990) The identification of nonlinear biological systems: Wiener kernel approaches. Ann. Biomed. Eng., 18:629–654.CrossRefGoogle Scholar
  9. 9.
    Korenberg, M.J. (1982) Statistical identification of parallel cascades of linear and nonlinear systems. IFAC Symp. Ident. & Syst. Param. Est, Rosslyn, Virginia, pp. 669–674.Google Scholar
  10. 10.
    Korenberg, M.J. (1984) Statistical identification of Volterra kernels of high order systems. ICAS’84, pp. 570–575.Google Scholar
  11. 11.
    Korenberg, M.J. (1985) Identifying noisy cascades of linear and static nonlinear systems. IFAC Symp. Ident. & Syst. Param. Est., York, United Kingdom, pp. 421–426.Google Scholar
  12. 12.
    Korenberg, M.J. (1991) Parallel cascade identification and kernel estimation for nonlinear systems. Ann. Biomed. Eng., 19:429–455.CrossRefGoogle Scholar
  13. 13.
    Lee, Y.W. and Schetzen, M. (1965) Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. J. Control, 2:237–254.CrossRefGoogle Scholar
  14. 14.
    Marmarelis, R.Z. and Naka, K.I. (1974) Identification of multi-input biological systems. IEEE Trans. Biomed. Eng., 21:88–101.CrossRefGoogle Scholar
  15. 15.
    Marmarelis, V.Z. (1991) Wiener analysis of nonlinear feedback in sensory systems. Ann. Biomed. Eng., 19:345–382.CrossRefGoogle Scholar
  16. 16.
    Marmarelis, R.Z. and Marmarelis, V.Z. (1978) Analysis of Physiological Systems, Plenum Press, New York, New York.CrossRefGoogle Scholar
  17. 17.
    Palm, G. (1978) On representation and approximation of nonlinear systems. Part II: discrete time. Biol Cybern., 34:49–52.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rugh, W.J. (1981) Nonlinear System Theory: The Volterra/Wiener Approach, Johns Hopkins University Press, Baltimore, Maryland.zbMATHGoogle Scholar
  19. 19.
    Volterra, V. (1959) Theory of Functionals and of Integral and Integro-differential Equations, Dover, New York, New York.zbMATHGoogle Scholar
  20. 20.
    Westwick, D.T. and Kearney, R.E. (1992) A new algorithm for the identification of multiple input Wiener systems. Biol. Cybern., 68:75–85.zbMATHCrossRefGoogle Scholar
  21. 21.
    Wiener, N. (1958) Nonlinear Problems in Random Theory, Wiley, New York, New York.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • David T. Westwick
    • 1
  • Robert E. Kearney
    • 1
  1. 1.Department of Biomedical EngineeringMcGill UniversityCanada

Personalised recommendations