Skip to main content

Identification of Multiple-Input Nonlinear Systems Using Non-White Test Signals

  • Chapter

Abstract

The parallel cascade method (Korenberg, 1982, 1991; Palm 1979) provides an elegant means of estimating the Volterra kernels of a nonlinear system. Korenberg (1991) demonstrated methods for producing the individual paths in this parallel array that require relatively few calculations, and are hence practical for use under a variety of conditions. In this paper, we propose alternative methods for determining the paths in a parallel cascade array. Our methods prove to be more robust in the presence of output noise, at the expense of slightly slower convergence under low noise conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billings, S.A. and Fakhouri, S.Y. (1982) Identification of systems containing linear dynamic and static nonlinear elements. Automatica., 18:15–26.

    Article  MathSciNet  MATH  Google Scholar 

  2. French, A.S. (1976) Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain. Biol. Cybern., 24:111–119.

    Article  MATH  Google Scholar 

  3. Golub, G.H. and van Loan, C.F. (1983) Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland.

    MATH  Google Scholar 

  4. Hunter, I.W. and Kearney, R.E. (1983) Two-sided linear filter identification. Med. Biol. Eng. Comput., 21:203–209.

    Article  Google Scholar 

  5. Hunter, I.W. and Korenberg, M.J. (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern., 55:135–144.

    MathSciNet  MATH  Google Scholar 

  6. Korenberg, M.J. (1973) Crosscorrelation analysis of neural cascades. Proc. 10th Ann. Rocky Mountain Bioeng. Symp., pp. 47–52.

    Google Scholar 

  7. Korenberg, M.J. and Hunter, I.W. (1986) The identification of nonlinear biological systems: LNL cascade models. Biol. Cybern., 55:125–134.

    MathSciNet  MATH  Google Scholar 

  8. Korenberg, M.J. and Hunter, I.W. (1990) The identification of nonlinear biological systems: Wiener kernel approaches. Ann. Biomed. Eng., 18:629–654.

    Article  Google Scholar 

  9. Korenberg, M.J. (1982) Statistical identification of parallel cascades of linear and nonlinear systems. IFAC Symp. Ident. & Syst. Param. Est, Rosslyn, Virginia, pp. 669–674.

    Google Scholar 

  10. Korenberg, M.J. (1984) Statistical identification of Volterra kernels of high order systems. ICAS’84, pp. 570–575.

    Google Scholar 

  11. Korenberg, M.J. (1985) Identifying noisy cascades of linear and static nonlinear systems. IFAC Symp. Ident. & Syst. Param. Est., York, United Kingdom, pp. 421–426.

    Google Scholar 

  12. Korenberg, M.J. (1991) Parallel cascade identification and kernel estimation for nonlinear systems. Ann. Biomed. Eng., 19:429–455.

    Article  Google Scholar 

  13. Lee, Y.W. and Schetzen, M. (1965) Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. J. Control, 2:237–254.

    Article  Google Scholar 

  14. Marmarelis, R.Z. and Naka, K.I. (1974) Identification of multi-input biological systems. IEEE Trans. Biomed. Eng., 21:88–101.

    Article  Google Scholar 

  15. Marmarelis, V.Z. (1991) Wiener analysis of nonlinear feedback in sensory systems. Ann. Biomed. Eng., 19:345–382.

    Article  Google Scholar 

  16. Marmarelis, R.Z. and Marmarelis, V.Z. (1978) Analysis of Physiological Systems, Plenum Press, New York, New York.

    Book  Google Scholar 

  17. Palm, G. (1978) On representation and approximation of nonlinear systems. Part II: discrete time. Biol Cybern., 34:49–52.

    Article  MathSciNet  Google Scholar 

  18. Rugh, W.J. (1981) Nonlinear System Theory: The Volterra/Wiener Approach, Johns Hopkins University Press, Baltimore, Maryland.

    MATH  Google Scholar 

  19. Volterra, V. (1959) Theory of Functionals and of Integral and Integro-differential Equations, Dover, New York, New York.

    MATH  Google Scholar 

  20. Westwick, D.T. and Kearney, R.E. (1992) A new algorithm for the identification of multiple input Wiener systems. Biol. Cybern., 68:75–85.

    Article  MATH  Google Scholar 

  21. Wiener, N. (1958) Nonlinear Problems in Random Theory, Wiley, New York, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Westwick, D.T., Kearney, R.E. (1994). Identification of Multiple-Input Nonlinear Systems Using Non-White Test Signals. In: Marmarelis, V.Z. (eds) Advanced Methods of Physiological System Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9024-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9024-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9026-9

  • Online ISBN: 978-1-4757-9024-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics