Advertisement

Experimental Basis for an Input/Output Model of the Hippocampal Formation

  • Theodore W. Berger
  • T. Patrick Harty
  • Choi Choi
  • Xiaping Xie
  • German Barrionuevo
  • Robert J. Sclabassi

Abstract

This chapter focuses on the problem of developing biologically realistic models of complex neural systems typical of those found in the mammalian brain. In a specific application to the hippocampus, it is demonstrated that the nonlinear dynamics of the system and its elements can be determined experimentally by electrically stimulating its major intrinsic afferents with an input that approximates a Poisson process. Through cross-correlation techniques, the input/output properties of the neural elements tested can be modeled as the kernels of a functional power series. Experimental elimination of feedforward and feedback pathways is used to study progressively more elemental units of the system, eventually allowing the characterization of nonlinear response characteristics of individual neurons in an open-loop condition. A strategy for extending this approach to obtain a representation of the global system is described.

Keywords

Granule Cell Dentate Gyrus GABAergic Interneuron Population Spike Perforant Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alger, B.E., and Nicoll, R.A. (1982) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol. (Lond.), 328:125–141.Google Scholar
  2. 2.
    Amaral, D.G. (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol., 182:851–914.CrossRefGoogle Scholar
  3. 3.
    Amaral, D.G., and Witter, M.P. (1989) The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neurosci., 31:571–591.CrossRefGoogle Scholar
  4. 4.
    Ambros-Ingerson, J., Granger, R., and Lynch, G. (1990) Simulation of paleocortex performs hierarchical clustering. Science, 247:1344–1348.CrossRefGoogle Scholar
  5. 5.
    Anderson, J.A., and Rosenfeld, E. (1988) Neurocomputing. MIT Press, Cambridge, Massachusetts.Google Scholar
  6. 6.
    Andersen, P., Bliss, T.V.P., and Skrede, K.K. (1971a) Unit analysis of hippocampal population spikes. Exp. Brain Res., 13:208–221.Google Scholar
  7. 7.
    Andersen, P., Bliss, T.V.P., and Skrede, K.K. (1971b) Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res., 13:222–238.Google Scholar
  8. 8.
    Bakst, I., Avendano, G. Morrison, J.H., and Amaral, D.G. (1986) An experimental analysis of the origins of somatostatin-like immunoreactivity in the dentate gyrus of the rat. J. Neurosci., 6:1452–1462.Google Scholar
  9. 9.
    Balzer, J.R., Sclabassi, R.J., and Berger, T.W. Nonlinear systems analysis of medial perforant path input to the hippocampal dentate gyrus: Effects of stimulus intensity. Submitted.Google Scholar
  10. 10.
    Barker, J.L., Harrison, N.L., Lange, G.D., and Owen, D.G. (1987) Potentiation of-aminobutyric-acid-activated chloride conductance by a steroid anaesthetic in cultured rat spinal neurones. J. Physiol (Lond.), 386:485–501.Google Scholar
  11. 11.
    Berger, T.W., Barrionuevo, G., Levitan, S.P., Krieger, D.N., and Sclabassi, R.J. (1991) Nonlinear systems analysis of network properties of the hippocampal formation. In: Neurocomputation and Learning: Foundations of Adaptive Networks, J.W. Moore and M. Gabriel (Eds.), MIT Press, Cambridge, Massachusetts, pp. 283–352.Google Scholar
  12. 12.
    Berger, T.W., and Bassett, J.L. (1992) System properties of the hippocampus. In: Learning and Memory: The Biological Substrates, I. Gormezano and E.A. Wasserman (Eds.), Lawrence Erlbaum, Hillsdale, New Jersey, pp. 275–320.Google Scholar
  13. 13.
    Berger, T.W., Berry, S.D., and Thompson, R.F. (1986) The hippocampus. In: Role of the Hippocampus in Classical Conditioning of Aversive and Appetitive Behaviors, R.L. Isaacson and K.H. Pribram (Eds.), Plenum, New York, New York pp. 203–239.Google Scholar
  14. 14.
    Berger, T.W., Eriksson, J.L., Ciarolla, D.A., and Sclabassi, R.J. (1988a) Nonlinear systems analysis of the hippocampal perforant path-dentate projection. Vol. II. Effects of random train stimulation. J. Neurophysiol., 60:1077–1094.Google Scholar
  15. 15.
    Berger, T.W., Eriksson, J.L., Ciarolla, D.A., and Sclabassi, R.J. (1988b) Nonlinear systems analysis of the hippocampal perforant path-dentate projection. Vol. III. Comparison of random train and paired impulse analyses. J. Neurophysiol, 60:1095–1109.Google Scholar
  16. 16.
    Berger, T.W., Harty, T.P., Barrionuevo, G., and Sclabassi, R.J. (1989) Modeling of neuronal networks through experimental decomposition. In: Advanced Methods of Physiological System Modeling, Vol. II., V.Z. Marmarelis (Ed.), Plenum, New York, New York, pp. 113–128.CrossRefGoogle Scholar
  17. 17.
    Berger, T.W., Robinson, G.B., Port, R.L., and Sclabassi, R.J. (1987) Nonlinear systems analysis of the functional properties of the hippocampal formation. In: Advanced Methods of Physiological System Modeling, Vol. I., V.Z. Marmarelis (Ed.), University of Souhern California, Biomedical Simulations Resource, Los Angeles, California, pp. 73–103.Google Scholar
  18. 18.
    Bienenstock, E.L., Cooper, L.N., and Munro, P.W. (1982) Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. J. Neurosci., 2:32–48.Google Scholar
  19. 19.
    Byrne, J.H., and W.O. Berry (Eds.) (1989) Neural Models of Plasticity: Experimental and Theoretical Approaches. Academic Press, New York, New York.Google Scholar
  20. 20.
    Carpenter, G.A., Cohen, M.A., Grossberg, S., Kohonen, T., Oja, E., Palm, G., Hopfield, J.J., and Tank, D.W. (1987) Computing with neural networks. Science, 235:1226–1229.CrossRefGoogle Scholar
  21. 21.
    Choi, C., and Berger, T.W. (1992) Functional evidence for greater GABAA receptor-mediated inhibition ventral versus dorsal in vitro hippocampal dentate gyrus. Society for Neurosci. Abstracts, 18:321.Google Scholar
  22. 22.
    Deadwyler, S.A., West, M.O., Christian, E.P., Hampson, R.E., and Foster, T.C. (1985) Sequence-related changes in sensory-evoked potentials in the dentate gyrus: A mechanism for item-specific short-term information storage in the hippocampus. Behav. Neural Biol, 44:201–212.CrossRefGoogle Scholar
  23. 23.
    Eichenbaum, H., Wiener, S.I., Shapiro, M.L., and Cohen, N.J. (1989) The organization of spatial coding in the hippocampus: A study of neural ensemble activity. J. Neurosci., 9:2764–2775.Google Scholar
  24. 24.
    Finkel, L.H., and Edelman, G.M. (1985) Interaction of synaptic modification rules with populations of neurons. Proc. Natl. Acad. Sci. (Wash.), 82:1291–1295.CrossRefGoogle Scholar
  25. 25.
    Gaarskjaer, F.B. (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. Vol. I. Terminal area related to number of granule and pyramidal cells. J. Comp. Neurol., 178:49–72.CrossRefGoogle Scholar
  26. 26.
    Gluck, M.A., and Thompson, R.F. (1987) Modeling the neural substrates of associative learning and memory: A computational approach. Psychol. Rev., 94:176–191.CrossRefGoogle Scholar
  27. 27.
    Grossberg, S., and Schmajuk, N.A. (1989) Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks, 2:79–102.CrossRefGoogle Scholar
  28. 28.
    Gulyas, A.I., Toth, K., Danos, P., and Freund, T.F. (1991) Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus. J. Comp. Neurol., 312:371–378.CrossRefGoogle Scholar
  29. 29.
    Hanson, S.J., and Burr, D.J. (1990) What connectionist models learn: Learning and representation in connectionist networks. Behav. Brain Sci., 13:471–518.CrossRefGoogle Scholar
  30. 30.
    Harty, T.P., Berger, T.W., Sclabassi, R.J., and Barrionuevo, G. (1994a) Nonlinear systems analysis of the in vitro hippocampal dentate gyrus. I. Characterization of granule cell response to perforant path input. Submitted.Google Scholar
  31. 31.
    Harty, T.P., Berger, T.W., Sclabassi, R.J., and Barrionuevo, G. (1994b) Nonlinear systems analysis of the in vitro hippocampal dentate gyrus. II. Contribution of GABAA and GABAB receptor function. Submitted.Google Scholar
  32. 32.
    Harty, T.P., Berger, T.W., Sclabassi, R.J., and Barrionuevo, G. (1994c) Nonlinear systems analysis of the in vitro hippocampal dentate gyrus. III. Characterization of open-loop properties of the perforant path-granule cell projection. Submitted.Google Scholar
  33. 33.
    Joy, R.M., and Albertson, T.E. (1993) NMDA receptors have a dominant role in population spike paired pulse facilitation in the dentate gyrus of urethane-anesthetized rats. Brain Res., 604:273–282.CrossRefGoogle Scholar
  34. 34.
    Krausz, H. (1975) Identification of nonlinear systems using random impulse train inputs. Biol. Cybernet., 19:217–230.zbMATHCrossRefGoogle Scholar
  35. 35.
    Lee, Y.W., and Schetzen, M. (1965) Measurement of the kernels of a non-linear system by cross-correlation. Int. J. Control, 2:237–254.CrossRefGoogle Scholar
  36. 36.
    Levy, W.B., Anderson, J.A., and Lehmkuhle, S. (1985) Synaptic Modification, Neuron Selectivity, and Nervous System Organization. Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  37. 37.
    Lomo, T. (1971a) Patterns of activation in a monosynaptic cortical pathway: The perforant path input to the dentate area of the hippocampal formation. Exp. Brain Res., 12:18–45.Google Scholar
  38. 38.
    Lomo, T. (1971b) Potentiation of monosynaptic EPSPs in the perforant path-dentate granule cell synapse. Exp. Brain Res., 12:46–63.Google Scholar
  39. 39.
    Lorente de Nó, R. (1934) Studies on the structure of cerebral cortex. Vol. II. Continuation of the study of the ammonic system. J. Psychol. Neurol., 46:113–177.Google Scholar
  40. 40.
    McCarren, M., and Alger, B.E. (1985) Use-dependent depression of IPSPs in rat hippocampal pyramidal cells vitro. J. Neurophysiol, 53:557–571.Google Scholar
  41. 41.
    McKenna, T., Davis, J., and Zornetzer, S.F. (1992) Single Neuron Computation. Academic Press, New York, New York.zbMATHGoogle Scholar
  42. 42.
    McNaughton, B.L. and Barnes, CA. (1977) Physiological identification and analysis of dentate granule cell response to stimulation of the medial and lateral perforant pathways in the rat. J. Comp. Neurol., 175:439–454.CrossRefGoogle Scholar
  43. 43.
    McNaughton, B.L., and Morris, R.G.M. (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci., 10:408–415.CrossRefGoogle Scholar
  44. 44.
    Marmarelis, V.Z. (1987) Recent advances in nonlinear and nonstationary analysis. In: Advanced Methods of Physiological System Modeling, V.Z. Marmarelis (Ed.), University of Southern California, Biomedical Simulations Resource, Los Angeles, California, pp. 323–336.Google Scholar
  45. 45.
    Marmarelis, P.Z., and Marmarelis, V.Z. (1978) Analysis of Physiological Systems: The White Noise Approach. Plenum Publishing, New York, New York.CrossRefGoogle Scholar
  46. 46.
    Milner, B. (1970) Memory and the medial temporal regions of the brain. In: Biology of Memory, K.H. Pribram and D.E. Broadbent (Eds.), Academic Press, New York, New York, pp. 29–50.Google Scholar
  47. 47.
    Newberry, N.R., and Nicoll, R.A. (1985) Comparison of the action of baclofen with γ-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol. (Lond.), 360:161–185.Google Scholar
  48. 48.
    Ribak, C.E., Nitsch, R., and Seress, L. (1990) Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation. J. Comp. Neurol., 300:449–461.CrossRefGoogle Scholar
  49. 49.
    Ribak, C.E., and Seress, L. (1983) Five types of basket cell in the hippocampal dentate gyrus: A combined Golgi and electron microscopic study. J. Neurocyt., 12:577–597.CrossRefGoogle Scholar
  50. 50.
    Rugh, W.J. (1981) Nonlinear Systems Theory: The Volterra/Wiener Approach. University Press, John Hopkins, Baltimore, Maryland.Google Scholar
  51. 51.
    Scharfman, H.E. (1991) Dentate hilar cells with dentrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci., 11:1660–1673.Google Scholar
  52. 52.
    Scharfman, H.E., Kunkel. D.D., and Schwartzkroin, RA. (1990) Synaptic connections of dentate granule cells and hilar neurons: Results of paired intracellular recordings and intracellular horseradish peroxidase injections. Neurosci., 37:693–707.CrossRefGoogle Scholar
  53. 53.
    Sclabassi, R.J., Eriksson, J.L., Port, R.L., Robinson, G.B., and Berger, T.W. (1988b) Nonlinear systems analysis of the hippocampal perforant path-dentate projection. Vol. I. Theoretical and interpretational considerations. J. Neurophysiol., 60:1066–1076.Google Scholar
  54. 54.
    Sclabassi, R.J., Hinman, C.L., Kroin, J.S., and Risch, H.A. (1977) The modulatory effect of prior input upon afferent signals in the somatosensory system. Proc. Joint Auto. Control Conf., IEEE, 12:787–795.Google Scholar
  55. 55.
    Sclabassi, R.J., Krieger, D.N., and Berger, T.W. (1988a) A systems theoretic approach to the study of CNS function. Ann. Biomed. Eng., 16:17–34.CrossRefGoogle Scholar
  56. 56.
    Sclabassi, R.J., Krieger, D.N., Solomon, J., Samosky, J., Levitan, S., and Berger, T.W. (1989) Decomposition through modeling of neuronal networks. In: Advanced Methods of Physiological System Modeling, Vol. II., V.Z. Marmarelis (Ed.), Plenum Publishing, New York, New York, pp. 129–146.CrossRefGoogle Scholar
  57. 57.
    Sejnowski, T.J., Koch, C., and Churchland, P.S. (1988) Computational neuroscience. Science, 24:1299–1306.CrossRefGoogle Scholar
  58. 58.
    Sloviter, R.S. (1991) Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus, 1:31–40.CrossRefGoogle Scholar
  59. 59.
    Sloviter, R.S., and Nilaver, G. (1987) Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-likeimmunoreactivity in the area dentata and hippocampus of the rat. J. Comp. Neurol., 256:42–60.CrossRefGoogle Scholar
  60. 60.
    Steward, O. (1976) Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol., 167:285–314.CrossRefGoogle Scholar
  61. 61.
    Struble, R.G., Desmond, N.L., and Levy, W.B. (1978) Anatomical evidence for interlamellar inhibition in the fascia dentata. Brain Res., 152:580–585.CrossRefGoogle Scholar
  62. 62.
    Swanson, L.W., Wyss, J.M., and Cowan, W.M. (1978) An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J. Comp. Neurol., 181:681–716.CrossRefGoogle Scholar
  63. 63.
    Teyler, T.J. and DiScenna, P. (1986) The hippocampal memory indexing theory. Behav. Neurosci., 100:147–154.CrossRefGoogle Scholar
  64. 64.
    Wiener, N. (1958) Nonlinear Problems in Random Theory. Wiley & Sons, New York, New York.zbMATHGoogle Scholar
  65. 65.
    Woodson, W., Nitecka, L., and Ben-Ari, Y. (1989) Organization of the GABAergic system in the rat hippocampal formation: A quantitative immunocytochemical study. J. Comp. Neurol., 280:254–271.CrossRefGoogle Scholar
  66. 66.
    Zimmer, J. (1971) Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation, J. Comp. Neurol., 142:393–416.CrossRefGoogle Scholar
  67. 67.
    Zipp, F., Nitsch, R., Soriano, E., and Frotscher, M. (1989) Entorhinal fibers form synaptic contacts on parvalbumin-immunoreactive neurons in the rat fascia dentata. Brain Res., 495:161–166.CrossRefGoogle Scholar
  68. 68.
    Zipser, D. (1992) Identification models of the nervous system. Neurosci., 47:853–862.CrossRefGoogle Scholar
  69. 69.
    Zola-Morgan, S., Squire, L.R., and Amaral, D.G. (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci., 6:2950–2967.Google Scholar
  70. 70.
    Zornetzer, S., Davis, J., and Lau, C. (Eds.) (1990) An Introduction to Neural and Electronic Networks. Academic Press, San Diego, California.Google Scholar
  71. 71.
    Zucker, R.S. (1989) Short-term synaptic plasticity. Ann. Rev. Neurosci., 12:13–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Theodore W. Berger
    • 1
  • T. Patrick Harty
    • 2
  • Choi Choi
    • 3
  • Xiaping Xie
    • 4
  • German Barrionuevo
    • 5
  • Robert J. Sclabassi
    • 6
  1. 1.Departments of Biomedical Engineering and Biological SciencesUniversity of Southern CaliforniaUSA
  2. 2.Department of Biomedical Engineering and Center for Hearing and Vestibular SciencesThe Johns Hopkins UniversityUSA
  3. 3.Department of Biological SciencesUniversity of Southern CaliforniaUSA
  4. 4.Department of Biomedical EngineeringUniversity of Southern CaliforniaUSA
  5. 5.Department of Behavioral Neuroscience and PsychiatryUniversity of PittsburghUSA
  6. 6.Departments of Neurological Surgery, Electrical Engineering, Behavioral Neuroscience and PsychiatryUniversity of PittsburghUSA

Personalised recommendations