Skip to main content

Residence Time Distributions in Pharmacokinetics: Behavioral and Structural Models

  • Chapter
Book cover Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis

Abstract

In contrast to other mathematical concepts used in pharmacokinetics the theory of residence time distributions (RTDs) is independent of a detailed structural model or a particular curve model. In view of the fact that interpretations of RTDs have been mostly based on compartmental models (e. g., [1, 2]), the following shortcomings of this class of structural models should be noted: 1) there is no a priori reason for the existence of homogeneous compartments. The assumption that all elementary subsystems are characterized by exponentially distributed transit times restricts the generality of the approach; 2) the definition of a sampling compartment from which elimination occurs does not allow for a differentiation between sampling upstream or downstream of the elimination site, which leads to inconsistencies in the definition of the volume of distribution, V ss [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Matis, T. E. Wehrly, and C. M. Metzler. On some stochastic formulations and related statistical moments of pharmacokinetic models. J. Pharmacokin. Biopharm. 11:77–92 (1983).

    Article  CAS  Google Scholar 

  2. S. L. Beal. Some clarifications regarding moments of residence times with pharmacokinetic models. J. Pharmacokin. Biopharm. 15:75–92 (1987).

    Article  CAS  Google Scholar 

  3. M. Weiss. Nonidentity of the steady-state volumes of distribution of the eliminating and noneliminating system. J. Pharm. Sci. (in press).

    Google Scholar 

  4. R. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New York, 1975.

    Google Scholar 

  5. W. Feller. An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 1966.

    Google Scholar 

  6. M. Brown. Approximating IMRL distributions by exponential distributions, with applications to first passage times. Ann. Probab. 11:419–427 (1983).

    Article  Google Scholar 

  7. P. Embrechts. A property of the generalized inverse Gaussian distribution with some applications. J. Appl. Probab. 20:537–544 (1983).

    Article  Google Scholar 

  8. T. K. Henthorn, M. J. Avram, and T. C. Krejcie. Intravascular mixing and drug distribution: The concurrent disposition of thiopental and indocyanine green. Clin. Pharmacol. Ther. 45:56–65 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves. J. Pharmacokin. Biopharm. 14:635–657 (1986).

    Article  CAS  Google Scholar 

  10. M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. II. Log-concave concentration-time curves following oral administration. J. Pharmacokin. Biopharm. 15:57–74 (1987).

    Article  CAS  Google Scholar 

  11. M. Brown and G. Ge. Exponential approximations for two classes of aging distributions. Ann. Probab. 12:869–875 (1984).

    Article  Google Scholar 

  12. J. Keilson. Markov Chain Models-Rarity and Exponentiality, Springer-Verlag, New York, 1979.

    Book  Google Scholar 

  13. M. Weiss. Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol. 25:695–702 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. M. E. Wise. Negative power functions of time in pharmacokinetics and their implications. J. Pharmacokin. Biopharm. 13:309–346 (1985).

    Article  CAS  Google Scholar 

  15. G. T. Tucker, P. R. Jackson, G. C. A. Storey, and D. W. Holt. Amiodarone disposition: Polyexponential, power and gamma functions. Eur. J. Clin. Pharmacol. 26:655–856 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. V. K. Piotrovskii. Pharmacokinetic stochastic model with Weibull-distributed residence times of drug molecules in the body. Eur. J. Clin. Pharmacol. 32:515–523 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. S. Riegelman and P. Collier. The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J. Pharmacokin. Biopharm. 8:509–534 (1980).

    Article  CAS  Google Scholar 

  18. J. M. van Rossum and C. A. M. van Ginneken. Pharmacokinetic system dynamics. In E. Gladtke and H. Heimann (eds.), Pharmacokinetics, Fischer, Stuttgart, 1980, pp. 53–73.

    Google Scholar 

  19. B. Jorgensen. Statistical properties of the generalized inverse Gaussian distribution. Lecture Notes in Statistics, Vol. 9, Springer-Verlag, New York, 1982.

    Google Scholar 

  20. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling of hepatic elimination. J. Pharmacokin. Biopharm. 16:41–83 (1988).

    Article  CAS  Google Scholar 

  21. D. R. Cox. Renewal Theory, Methuen, London, 1962.

    Google Scholar 

  22. M. Weiss. Theorems on log-convex disposition curves in drug and tracer kinetics. J. Theor. Biol. 116:355–368 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. M. Brown. Bounds, inequalities, and monotonicity properties for some specialized renewal processes. Ann. Probab. 8:227–240 (1980).

    Article  Google Scholar 

  24. M. Weiss and K. S. Pang. The dynamics of drug distribution as assessed by the second and third curve moments. Eur. J. Pharmacol. 183:611–622 (1990).

    Article  Google Scholar 

  25. M. Brown. Further monotonicity properties for specialized renewal processes. Ann. Probab. 9:891–895 (1981).

    Article  Google Scholar 

  26. M. Weiss. A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics. J. Math. Biol. 18:95–102 (1984).

    Article  Google Scholar 

  27. M. Weiss. Moments of physiological transit time distributions and the time course of drug disposition in the body. J. Math. Biol. 15:305–318 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. M. Weiss. Washout time versus mean residence time. Pharmazie 43:126–127 (1988).

    PubMed  CAS  Google Scholar 

  29. M. Weiss. Model-independent assessment of accumulation kinetics based on moments of drug disposition curves. Eur. J. Clin. Pharmacol. 27:355–359 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. van Rossum, J. E. G. M. de Bie, G. van Lingen, and H. W. A. Teeuwen. Pharmacokinetics from a dynamical systems point of view. J. Pharmacokin. Biopharm. 17:365–392 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiss, M. (1991). Residence Time Distributions in Pharmacokinetics: Behavioral and Structural Models. In: D’Argenio, D.Z. (eds) Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9021-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9021-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9023-8

  • Online ISBN: 978-1-4757-9021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics