Pharmacokinetics of Linear Reversible Metabolic Systems

  • Haiyung Cheng
  • William J. Jusko


The role of reversible metabolism in pharmacology and pharmacokinetics has been gradually appreciated. Many compounds undergo this process. For example, commonly-used drugs such as captopril [1, 2], sulindac [3, 4], methylprednisolone [5, 6], lovastatin [7, 8], procainamide [9–11], imipramine [12, 13], and clofibric acid [14–16] have interconversion metabolites. Additional examples of drugs [17–31] which undergo reversible metabolism are listed in Table I. These compounds can be generally categorized according to their metabolically affected groups as: sulfides, sulfoxides, alcohols, lactones, arylamines, tertiary amines, and carboxylic acids.


Parent Drug Tertiary Amine Central Compartment Clofibric Acid Distribution Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. Kripalani, A. V. Dean, and B. H. Migdalof. Metabolism of captopril-L-cysteine, a captopril metabolite, in rats and dogs. Xenobiotica 12:701–705 (1983).CrossRefGoogle Scholar
  2. 2.
    O. H. Drummer and B. Jarrott. Captopril disulfide conjugates may act as prodrugs: Disposition of the disulfide dimer of captopril in the rat. Biochem. Pharmacol 33:3567–3571 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    K. C. Kwan and D. E. Duggan. Pharmacokinetics of sulindac. Acta. Rhumatologica Belgica 1:168–178 (1977).PubMedGoogle Scholar
  4. 4.
    D. E. Duggan, K. F. Hooke, and S. S. Hwang. Kinetics and disposition of sulindac and metabolites. Drug Metab. Dispos. 8:241–246 (1981).Google Scholar
  5. 5.
    W. F. Ebling, S. J. Szefler, and W. J. Jusko. Methylprednisolone disposition in rabbits. Analysis, prodrug conversion, reversible metabolism, and comparison with man. Drug Metab. Dispos. 13:296–304 (1985).PubMedGoogle Scholar
  6. 6.
    W. F. Ebling and W. J. Jusko. The determination of essential clearance, volume, and residence time parameters of recirculating metabolic systems: The reversible metabolism of methylprednisolone and methylprednisone in rabbits. J. Pharmacokin. Biopharm. 14:557–599 (1986).Google Scholar
  7. 7.
    R. J. Stubbs, M. Schwartz, and W. F. Bayne. Determination of mevinolin and mevinolinic acid in plasma and bile by reversed-phase high-performance liquid chroma tography. J. Chromatogr. 383:438–443 (1986).PubMedGoogle Scholar
  8. 8.
    D. E. Duggan, I.-W. Chen, W. F. Bayne, R. A. Halpin, C. A. Duncan, M. S. Schwartz, R. J. Stubbs, and S. Vickers. The physiological disposition of lovastatin. Drug Metab. Dispos. 17:166–173 (1989).PubMedGoogle Scholar
  9. 9.
    J. M. Strong, J. S. Dutcher, W.-K. Lee, and A. J. Atkinson, Jr. Pharmacokinetics in man of the N-acetylated metabolits of procainamide. J. Pharmacokin. Biopharm. 3:223–235 (1975).CrossRefGoogle Scholar
  10. 10.
    T. L. Ding, E. T. Lin, and L. Z. Benet. The reversible biotransformation of N-acetylpro-cainamide in the rhesus monkey. Arneizmittel Forsch. 28:281–283 (1978).Google Scholar
  11. 11.
    K. S. Pang, J. C. Huang, C. Finkle, P. Kong, W. F. Cherry, and S. Fayz. Kinetics of procainamide N-acetylation in the rat in vivo and in the perfused rat liver preparation. Drug Metab. Dispos. 12:314–321 (1984).PubMedGoogle Scholar
  12. 12.
    M. H. Bickel. The pharmacology and biochemistry of N-oxides. Pharmacol. Rev. 21:325–355 (1969).PubMedGoogle Scholar
  13. 13.
    A. Nagy and T. Hansen. The kinetics of imipramine N-oxide in man. Acta. Pharmacol. Tox. 42:58–67 (1978).CrossRefGoogle Scholar
  14. 14.
    E. M. Faed. Properties of acyl glucuronides: Implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab. Rev. 15:1213–1249 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    P. J. Meffin, D. M. Zilm, and J. R. Veenendaal. Reduced clofibric acid clearance in renal dysfunction is due to a futile cycle. J. Pharmacol. Exp. Ther. 227:732–738 (1983).PubMedGoogle Scholar
  16. 16.
    B. C. Sallustio, Y. J. Purdie, D. J. Birkett, and P. J. Meffin. Effect of renal dysfunction on the individual components of the acyl-glucuronide futile cycle. J. Pharmacol. Exp. Ther. 251:288–294 (1989).PubMedGoogle Scholar
  17. 17.
    S. C. Mitchell, J. R. Idle, and R. L. Smith. Reductive metabolism of cimetidine sulphoxide in man. Drug Metab. Dispos. 10:289–290 (1982).PubMedGoogle Scholar
  18. 18.
    S. C. Mitchell and R. H. Waring. The fate of cimetidine sulphoxide in the guinea pig. Xenobiotica 19:179–188 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    H. A. Strong, A. G. Renwick, and C. F. George. The site of reduction of sulphinpyrazone in the rats. Xenobiotica 14:815–826 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    B.-S. Kuo and W. A. Ritschel. Pharmacokinetics and reversible biotransformation of sulfin-pyrazone and its metabolites in rabbits. I. Single-Dose study. Pharmaceut. Res. 3:173–177 (1986).CrossRefGoogle Scholar
  21. 21.
    B.-S. Kuo and W. A. Ritschel. Pharmacokinetics and reversible biotransformation of sulfin-pyrazone and its metabolites in rabbits. II. Multiple-Dose study. Pharmaceut. Res. 3:178–183 (1986).CrossRefGoogle Scholar
  22. 22.
    A. Kowarski, B. Lawrence, W. Hung, and C. J. Migeon. Interconversion of cortisol and cortisone in man and its effect on the measurement of cortisol secretion rate. J. Clin. Endocr. 29:377–381 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    I. E. Bush and B. B. Mahesh. Metabolism of 11-oxygenated steroids. Biochem. J. 71:718–742 (1959).PubMedGoogle Scholar
  24. 24.
    A. Karim, J. Zagarella, J. Hribar, and M. Dooley. Spironolactone. I. Disposition and metabolism. Clin. Pharmacol. Ther. 19:158–169 (1976).PubMedGoogle Scholar
  25. 25.
    S. Asada, T. Ohtawa, and H. Nakae. Reversible pharmacokinetic profiles of canrenoic acid and its biotransformed product, canrenone in the rat. Chem. Pharm. Bull. 38:1012–1018 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Shimoda, E. Kokue, T. Shimizu, R. Muraoka, and T. Hayama. Role of deacetylation in the nonlinear pharmacokinetics of sulfamonomethoxine in pigs. J. Pharmacobio-Dynam. 11:576–582 (1988).CrossRefGoogle Scholar
  27. 27.
    J. G. Eppel and J. J. Thiessen. Liquid Chromatographic analysis of sulfaquinoxaline and its application to pharmacokinetic studies in rabbits. J. Pharm. Sci. 73:1635–1638 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    T. B. Vree, J. J. Reekers-Ketting, C. A. Hekster, and J. F. M. Nouws. Acetylation and deacetylation of sulphonamides in dogs. J. Vet. Pharmacol. Ther. 6:153–156 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    P. F. Coccia and W. W. Westerfeld. The metabolism of chlorpromazine by liver microsomal enzyme system. J. Pharmacol. Exp. Ther. 157:446–458 (1967).PubMedGoogle Scholar
  30. 30.
    T. J. Jaworski, E. M. Hawes, G. Mckay, and K. K. Midha. The metabolism of chlorpromazine N-oxide in man and dog. Xenobiotica 20:107–115 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    I. Bekersky, W. A. Colburn, L. Fishman, and S. A. Kaplan. Metabolism of salicylic acid in the isolated perfused rat kidney. Drug Metab. Dispos. 8:319–324 (1980).PubMedGoogle Scholar
  32. 32.
    J. Mann and E. Gurpide. Generalized rates of transfer in open systems of pool in the steady state. J. Clin. Endocr. 26:1346–1354 (1966).PubMedCrossRefGoogle Scholar
  33. 33.
    J. J. DiStefano. Concepts, properties, measurement, and computation of clearance rates of hormones and other substances in biological samples. Ann. Biomed. Eng. 4:302–319 (1976).PubMedCrossRefGoogle Scholar
  34. 34.
    J. H. Oppenheimer and E. Gurpide. Quantitation of the production, distribution, and inter-conversion of hormones. In L. J. Degroot (ed.), Endocrinology, Vol. 3, Grune and Stratton, New York, 1979, pp. 2029–2036.Google Scholar
  35. 35.
    J. G. Wagner, A. R. DiSanto, W. R. Gillespie, and K. S. Albert. Reversible metabolism and pharmacokinetics: Application to prednisone and prednisolone. Res. Commun. Chem. Path. 32:387–405 (1981).Google Scholar
  36. 36.
    A. Rescigno and E. Gurpide. Estimation of average times of residence, recycle, and interconversion of blood-borne compounds. J. Clin. Endocrinol. Metab. 36:263–276 (1973).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Cheng and W. J. Jusko. Mean interconversion times and distribution rate parameters for drugs undergoing reversible metabolism. Pharmaceut. Res. 7:1003–1010 (1990).CrossRefGoogle Scholar
  38. 38.
    S. S. Hwang, K. C. Kwan, and K. S. Albert. A linear model of reversible metabolism and its application to bioavailability assessment. J. Pharmacokin. Biopharm. 9:693–709 (1981).CrossRefGoogle Scholar
  39. 39.
    S. S. Hwang and W. F. Bayne. General method for assessing bioavailability of drugs undergoing reversible metabolism in a linear system. J. Pharmaceut. Sci. 75:820–821 (1986).CrossRefGoogle Scholar
  40. 40.
    H. Cheng and W. J. Jusko. Constant-rate intravenous infusion methods for estimating steady-state volumes of distribution and mean residence times in the body for drugs undergoing reversible metabolism. Pharmaceut. Res. 7:628–632 (1990).CrossRefGoogle Scholar
  41. 41.
    L. Aarons. Mean residence time for drugs subject to reversible metabolism. J. Pharm. Pharmacol. 39:565–567 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    H. Cheng and W. J. Jusko. Mean residence times of multicompartmental drugs undergoing reversible metabolism. Pharmaceut. Res. 7:104–108 (1990).Google Scholar
  43. 43.
    H. Cheng and W. J. Jusko. Mean residence times and distribution volumes for drugs undergoing linear reversible metabolism and tissue distribution and linear or nonlinear elimination from the central compartments. Pharmaceut. Res. 8:508–51 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Haiyung Cheng
    • 1
    • 2
  • William J. Jusko
    • 1
  1. 1.Department of PharmaceuticsState University of New York at BuffaloUSA
  2. 2.Merck Sharp & Dohme Research LaboratoriesUSA

Personalised recommendations