Pharmacokinetic Parameter Estimation with Stochastic Dynamic Models

  • David Z. D’Argenio
  • Ruomei Zhang


The pharmacokinetic parameter estimation problem is reexamined within the framework of stochastic dynamic systems. Using this formalism, two sources of uncertainty are incorporated into the parameter estimation procedure: measurement error and process or model error. Consideration is given to linear dynamic models, with both model and measurement error terms modeled as Gaussian random processes. The maximum likelihood estimate of the parameters is obtained by using the Kaiman filter formulation of the model to compute the likelihood function which is then maximized by direct nonlinear optimization. This approach to maximum likelihood estimation, given process or model error as well as output error, is evaluated using several simulated pharmacokinetic parameter estimation problems.


Kalman Filter Extended Kalman Filter Process Noise Process Error Output Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Endrenyi. Diagnosis, robust design and estimation in nonlinear regression. T. 42nd Annual Quality Control Conf., Rochester, 1986, pp. 21-41.Google Scholar
  2. 2.
    R. J. Carroll and D. Ruppert. A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model. J. Am. Stat. Assoc. 77:878–882 (1982).CrossRefGoogle Scholar
  3. 3.
    R. J. Carroll and D. Ruppert. Robust estimation in heteroscedastic linear models. Ann. Stat. 10:429–441 (1984).CrossRefGoogle Scholar
  4. 4.
    D. M. Giltinan, R. J. Carroll, and D. Ruppert. Some new estimation methods for weighted regression when there are possible outliers. Technometrics 28:219–230 (1986).CrossRefGoogle Scholar
  5. 5.
    R. J. Carroll and D. Ruppert. Diagnostics and robust estimation when transforming the regression model and the response. Technometrics 29:287–299 (1987).CrossRefGoogle Scholar
  6. 6.
    S. L. Beal and L. B. Sheiner. Heteroscedastic nonlinear regression. Technometrics 30:327–338 (1988).CrossRefGoogle Scholar
  7. 7.
    D. M. Giltinan and D. Ruppert. Fitting heteroscedastic regression models to individual pharmacokinetic data using standard statistical software. J. Pharmacokin. Biopharm. 17:601–614 (1989).CrossRefGoogle Scholar
  8. 8.
    D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and Its Application, Wiley, New York, 1988.CrossRefGoogle Scholar
  9. 9.
    P. S. Maybeck. Stochastic Models, Estimation and Control, Volume 1, Academic Press, New York, 1979.Google Scholar
  10. 10.
    P. S. Maybeck. Stochastic Models, Estimation and Control, Volume 2, Academic Press, New York, 1982.Google Scholar
  11. 11.
    F. S. Schweppe. Uncertain Dynamic Systems, Prentice Hall, Inc., Englewood Cliffs, 1973.Google Scholar
  12. 12.
    G. C. Goodwin and R. L. Payne. Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, 1977.Google Scholar
  13. 13.
    G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction on Control, Prentice-Hall, Inc., Englewood Cliffs, 1984.Google Scholar
  14. 14.
    J. M. Mendel. Lessons in Digital Estimation Theory, Prentice-Hall, Inc., Englewood Cliffs, 1987.Google Scholar
  15. 15.
    P. J. Harrison and C. F. Stevens. A Bayesian approach to short-term forecasting. Oper. Res. Quart. 22:341–362 (1971).CrossRefGoogle Scholar
  16. 16.
    P. J. Harrison and C. F. Stevens. Bayesian forecasting (with discussion). J. Roy. Stat. Soc. B. Met. 38:205–247 (1976).Google Scholar
  17. 17.
    R. J. Meinhold and N. D. Singpurwalla. Understanding the Kaiman Filter. Am. Stat. 37:123–127 (1983).Google Scholar
  18. 18.
    L. R. Weill and P. N. DeLand. The Kaiman Filter: An introduction to the mathematics of linear least mean square recursive estimation. Int. J. Math. Educ. Sci. Technol. 17:347–366 (1986).CrossRefGoogle Scholar
  19. 19.
    J. C. Spall. Bayesian Analysis of Time Series and Dynamic Models, Marcel Dekker, Inc., New York, 1988.Google Scholar
  20. 20.
    J. R. Powell, S. Vozeh, P. Hopewell, J. Costello, L. B. Sheiner, and S. Riegelman. Theophylline disposition in acutely ill hospitalized patients. The effect of smoking, heart failure, severe airway obstruction, and pneumonia. Am. Rev. Respir. Dis. 118:229–238 (1978).PubMedGoogle Scholar
  21. 21.
    J. H. Rodman, M. Abromowitch, J. A. Sinkule, F. A. Hayes, G. K. Rivera, and W. E. Evans. Clinical pharmacodynamics of continuous infusion teniposide: Systemic exposure as a determinant of response in a phase I trial. J. Clin. Oncol. Vol. 5, No. 7, 1007–1014 (1987).PubMedGoogle Scholar
  22. 22.
    M. Rowland, P. D. Thomson, A. Guichard, and K. L. Melmon. Disposition kinetics of lidocaine in normal subjects. Ann. N. Y. Acad. Sci. 179:383–398 (1971).PubMedCrossRefGoogle Scholar
  23. 23.
    A. H. Jazwinski. Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.Google Scholar
  24. 24.
    A. P. Sage and C. D. Wakefield. Maximum likelihood identification of time varying and random system parameters. Int. J. Contr., Vol. 16, No. 1, 81–100 (1972).CrossRefGoogle Scholar
  25. 25.
    P. Eykhoff. System Identification: Parameter and State Estimation, John Wiley & Sons, Chicester, 1974.Google Scholar
  26. 26.
    L. W. Nelson and E. Stear. The simultaneous on-line estimation of parameters and states in linear systems. IEEE T. Automat. Contr. AC-21:94–98 (1976).CrossRefGoogle Scholar
  27. 27.
    L. Ljung. Asymptotic behaviour of the extended Kaiman filter as parameter estimator for linear systems. IEEE T. Automat. Contr. AC-24:36–51 (1979).CrossRefGoogle Scholar
  28. 28.
    W. F. Powers, P. H. Abbrecht, and D. G. Covell. Systems and microcomputer approach to anticoagulant therapy. IEEE T. Bio-med. Eng. 27:520–523 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David Z. D’Argenio
    • 1
  • Ruomei Zhang
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of Southern CaliforniaUSA

Personalised recommendations