The Nuclear Three-Body Problem

  • A. N. Mitra
Part of the Advances in Nuclear Physics book series (ANP)


When one speaks of the three-body problem, the first characteristic that comes to mind is its “insolubility.” This describes the situation for the helium atom whose Schrödinger equation does not admit of an exact solution in the sense, say, of the corresponding hydrogen atom problem. The feature of insolubility thus is intimately associated with the very law of force—the Coulomb force—which so accurately describes the behavior of atomic systems. If this law were replaced by something simpler, say the harmonic oscillator force, insolubility would certainly not be a problem any more, though presumably more serious (physical) problems would arise. However, thanks to our better knowledge of atomic systems, this freedom simply does not exist. Therefore, the best the theoretical physicist can do with atomic three-body systems is to devise powerful approximation methods to obtain numerically accurate results for comparison with experiment. No one would seriously expect these methods, by themselves, to throw any new light over what is already known on the basic electromagnetic low of interaction which just happens to be too well established.


Spectator Function Schrodinger Equation Electromagnetic Form Factor Separable Potential Faddeev Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Hamada and I. D. Johnston, A potential model representation of two-nucleon data below 315 MeV, Nucl. Phys. 34, 382–403 (1962).Google Scholar
  2. 2.
    J. M. Blatt and L. M. Delves, Further results on the binding energy of the triton, Phys. Rev. Letters 12: 542–546 (1964).ADSGoogle Scholar
  3. 3.
    L. D. Faddeév, Scattering theory of a three-particle system Trans: Soviet Phys. JETP 12: 1014–1019 (1961).Google Scholar
  4. 4.
    H. A. Bethe, Invited talk at the International Symposium on Contemporary Physics, International Center for Theoretical Physics, TRIESTE, June 1968; (to be published).Google Scholar
  5. 5.
    G. Skoroniakov and K. Ter Martirosian, Three-body problem for short-range forces, I, Scattering of low-energy neutrons by deuterons, (Trans): Soviet Phys. JETP 4: 648–661 (1957).Google Scholar
  6. 6.
    L. Eyges, Quantum mechanical three-body problem, Phys. Rev. 115: 1643–1655 (1959).MathSciNetADSzbMATHGoogle Scholar
  7. 7.
    Y. Yamaguchi, Two-nucleon problem when the potential is non-local but separable, I, Phys. Rev. 95: 1628–1634 (1954).ADSzbMATHGoogle Scholar
  8. 8.
    Y. Yamaguchi and Y. Yamaguchi, Two-nucleon problem when the potential is non-local but separable II, Phys. Rev. 95: 1635–1643 (1954).ADSGoogle Scholar
  9. 9.
    A. N. Mitra, Three-body problem with separable potentials (I): Bound States, Nucl. Phys. 32: 529–542 (1962).zbMATHGoogle Scholar
  10. 10.
    C. Lovelace, Practical theory of three-particle states. I. Non relativistic, Phys. Rev. 135: B1225–B1249 (1964).MathSciNetADSGoogle Scholar
  11. 11.
    S. Weinberg, Systematic solution of multiparticle scattering problems, Phys. Rev. 133: B232–B256 (1964).MathSciNetADSGoogle Scholar
  12. 12.
    M. L. Goldberger and K. M. Watson, “Collision Theory,” John Wiley and Sons, Inc., New York, 1964, p. 749.zbMATHGoogle Scholar
  13. 13.
    K. M. Watson and J. Nuttall, “Topics in Several Particle Dynamics,” Holden-Day, Inc., San Francisco, 1967.Google Scholar
  14. 14.
    R. D. Amado, Soluble problems in scattering from compound systems, Phys. Rev. 132: 485–494 (1963).MathSciNetADSzbMATHGoogle Scholar
  15. 15.
    R. D. Amado, Theory of the triton wave function, Phys. Rev. 141: 902–913 (1966).ADSGoogle Scholar
  16. 16.
    A. N. Mitra and V. S. Bhasin, Three-body problem with separable potentials, II, n-d Scattering, Phys. Rev. 131: 1265–1271 (1963).ADSGoogle Scholar
  17. 17.
    A. G. Sitenko and V. F. Kharchenko, On the binding and scattering of the three-nucleon system, Nucl. Phys. 49: 15–28 (1963).Google Scholar
  18. 18.
    I. Duck in Advances in Nuclear Physics (M. Baranger and E. Vogt, eds.) Vol. I, pp. 341–410, Plenum Press, New York (1968).Google Scholar
  19. 19.
    R. Aaron, R. D. Amado and Y. Y. Yam, Calculations of neutron-deuteron scattering, Phys. Rev. 140: B1291–B1300 (1965).ADSGoogle Scholar
  20. 20.
    A. C. Phillips, An exact calculation of the break-up of deuterons by neutrons, Phys. Letters 20: 50–52 (1966).ADSGoogle Scholar
  21. 21.
    R. Aaron and R. D. Amado, Theory of the reaction n + dn + n + p, Phys. Rev. 150: 857–866 (1966).ADSGoogle Scholar
  22. 22.
    J. A. Wheeler, On the mathematical description of light nuclei by the method of resonating group structures, Phys. Rev. 52: 1107–1122 (1937).ADSzbMATHGoogle Scholar
  23. 23.
    J. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics,” John Wiley and Sons, Inc., New York (1952).zbMATHGoogle Scholar
  24. 24.
    H. A. Bethe, Nuclear many-body problem, Phys. Rev. 103: 1353–1390 (1956).ADSzbMATHGoogle Scholar
  25. 25.
    R. Sugar and R. Blankenbecler, Variational upper and lower bounds for multichannel scattering, Phys. Rev. 136: B472–B491 (1964).MathSciNetADSGoogle Scholar
  26. 26.
    J. Gillespie, Separable operators in scattering theory, Phys. Rev. 160: 1432–1440 (1967).ADSGoogle Scholar
  27. 27.
    J. S. Ball and D. Y. Wong, Phys. Rev. 169: 1362 (1968).ADSGoogle Scholar
  28. 28.
    A. N. Mitra, Analyticity of amplitudes and separable potentials, Phys. Rev. 123: 1892–1895 (1961).MathSciNetADSzbMATHGoogle Scholar
  29. 29.
    J. H. Naqvi, Separable non-local nuclear potential for singlet states, Nucl. Phys. 58: 289–298 (1964).Google Scholar
  30. 30.
    V. K. Gupta, Ph. D. Thesis, Delhi University, 1967; unpublished.Google Scholar
  31. 31.
    F. Tabakin, Short-range correlations and the three-body binding energy, Phys. Rev. 137: B75–B79 (1965).ADSGoogle Scholar
  32. 32.
    F. Tabakin, An effective interaction for nuclear Hartree-Fock calculations, Ann. Phys. (N. Y.) 30: 51–94 (1964).ADSGoogle Scholar
  33. 33.
    A. N. Mitra and J. H. Naqvi, A separable potential for the two-nucleon (T = 1) interaction, Nucl. Phys. 25: 307–316 (1961).MathSciNetGoogle Scholar
  34. 34.
    J. H. Naqvi, A note on the deuteron magnetic moment, Nucl. Phys. 36: 578–482 (1962).Google Scholar
  35. 35.
    A. N. Mitra, B. S. Bhakar, and V. S. Bhasin, A potential for low-energy α-N interaction, Nucl. Phys. 38: 316–321 (1962).Google Scholar
  36. 36.
    S. K. Monga, Hypertriton binding energy with NLS potentials, Nuovo Cimento 41B: 164–173 (1966);ADSGoogle Scholar
  37. 36a.
    also, I. Sh. Vashakidze and C. A. Chilasvilli, binding energy of H3 with nonlocal separable potentials, (trans): Soviet Phys. Doklady 9: 576–578 (1965).ADSGoogle Scholar
  38. 37.
    J. Hetherington and L. Schick, Low-energy ∧-d scattering and the Hypertriton with separable potentials, Phys. Rev. 139: B1164–B1169 (1965).ADSGoogle Scholar
  39. 38.
    J. J. de Swart and C. Dullemond, Effective range theory and the low-energy hyperon-nucleon interactions, Ann. Phys. (N.Y.) 19: 458–495 (1962).ADSGoogle Scholar
  40. 39.
    E. P. Wigner, On the mass defect of helium, Phys. Rev. 43: 252–257 (1933);ADSGoogle Scholar
  41. 39a.
    E. Feenberg, Neutron-proton interaction, Part I, The binding energies of H and He isotopes, Phys. Rev. 47: 850–856 (1935).ADSzbMATHGoogle Scholar
  42. 40.
    R. Omnes, Three-body scattering amplitudes, I. Separation of angular momentum, Phys. Rev. 134: B1358–B1364 (1964).MathSciNetADSGoogle Scholar
  43. 41.
    J. L. Basdevant and R. E. Kreps, Relativistic three-pion calculation, I, Phys. Rev. 141: 1398–1403 (1966).MathSciNetADSGoogle Scholar
  44. 42.
    H. P. Noyes and T. Osborn, Reduction of finite range three-body problem in two variables, Phys. Rev. Letters 17: 215–218 (1966).ADSGoogle Scholar
  45. 43.
    G. Derrick and J. M. Blatt, Classification of triton wave functions, Nucl. Phys. 8: 310–324 (1958).Google Scholar
  46. 44.
    T. A. Osborn, SLAC Report No. 79; Ph. D. Thesis, Stanford, 1968.Google Scholar
  47. 45.
    J. Ball and D. Y. Wong, Solution of Faddeév equation for short-range potentials, Phys. Rev. 169: 1362–1364 (1968).ADSGoogle Scholar
  48. 46.
    A. N. Mitra, Three body model of stripping and the validity of DWBA, Phys. Rev. 139: B1472–1478 (1965).MathSciNetADSGoogle Scholar
  49. 47.
    N. Austern, in “Fast Neutron Physics II” (J. B. Marion and J. L. Fowler, ed.) Interscience Publishers, Inc., New York (1962).Google Scholar
  50. 48.
    W. Tobocman, “Theory of Direct Nuclear Reactions,” Oxford University Press, London (1961).Google Scholar
  51. 49.
    S. T. Butler, “Nuclear Stripping Reactions,” John Wiley and Sons, Inc., New York (1961).Google Scholar
  52. 50.
    R. Aaron and P. E. Shanley, Calculations of deuteron stripping in a soluble model, Phys. Rev. 142: 608–611 (1966).ADSGoogle Scholar
  53. 51.
    E. P. Wigner, On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51: 106–119 (1937).ADSGoogle Scholar
  54. 52.
    B. S. Bhakar, Ph. D. Thesis, Delhi University, 1965; unpublished.Google Scholar
  55. 53.
    L. P. Kok, G. Erens and R. Van Wageningen, Nucleon-nucleon interaction and triton binding energy; University of Groningen, preprint, 1968.Google Scholar
  56. 54.
    R. Bryan and B. L. Scott, Nucleon nucleon scattering from one boson exchange potentials, Phys. Rev. 135: B434–B450 (1964).ADSGoogle Scholar
  57. 55.
    J. J. Sakurai, Theory of strong interactions, Ann. Phys. (N. Y.) 11: 1–48 (1960).MathSciNetADSGoogle Scholar
  58. 56.
    M. Gell-Mann, in “Eight-fold Way” (M. Gell-Mann and Y. Neeman, eds.) W. A. Benjamin, Inc., New York (1965).Google Scholar
  59. 57.
    M. Verde, in “Handbuch der Physik” (S. Flugge, ed.) Vol. 39, p. 170, Springer Verlag, Berlin (1957).Google Scholar
  60. 58.
    R. G. Sachs, “Nuclear Theory,” Addison Wesley Publishing Co., Inc. Cambridge, Mass., (1952).Google Scholar
  61. 59.
    G. Derrick, Kinetic and potential energy matrix elements for the triton, Nucl. Phys. 16: 405–422 (1960).zbMATHGoogle Scholar
  62. 60.
    L. Cohen and J. B. Willis, Wave functions and matrix elements for triton, Nucl. Phys. 32: 114–127 (1962).Google Scholar
  63. 61.
    A. N. Mitra, P-wave theory of three nucleon states, Phys. Rev. 150: 839–846 (1966).ADSGoogle Scholar
  64. 62.
    A. N. Mitra and V. S. Bhasin, Existence of the trineutron, Phys. Rev. Letters 16: 523–526 (1966).ADSGoogle Scholar
  65. 63.
    V. Adjacic, M. Cerineo, B. Lalovic, G. Paic, I. Slaus, and P. Tomas, Reaction H3(n, p) 3n at E n = 14.4 MeV, Phys. Rev. Letters 14: 444–449 (1965).ADSGoogle Scholar
  66. 64.
    B. S. Bhakar, The triton problem with tensor forces, Nucl. Phys. 46: 572–576 (1963).Google Scholar
  67. 65.
    A. N. Mitra, G. L. Schrenk and V. S. Bhasin, Tensor force and zero energy n-d scattering, Ann. Phys. (N. Y.) 40: 357–373 (1966).ADSGoogle Scholar
  68. 66.
    R. Aaron, R. D. Amado and Y. Y. Yam, Calculation of n-d scattering and the triton binding energy, Phys. Rev. Letters 13: 574–576 (1964).ADSGoogle Scholar
  69. 67.
    V. S. Bhasin and G. L. Schrenk and A. N. Mitra, Neutron-deuteron scattering at low energies, Phys. Rev. 137: B398–B401 (1965).ADSGoogle Scholar
  70. 68.
    A. C. Phillips, Application of the Faddeév equations to the three-nucleon problem, Phys. Rev. 142: 984–989 (1966).MathSciNetADSGoogle Scholar
  71. 69.
    H. S. W. Massey, in Proc. Int. Conf. on Nucl. Forces and the Few-Nucleon Problem, London, 1959 (T. C. Griffith and E. A. Power, eds.), Pergamon Press, Inc., New York (1960).Google Scholar
  72. 70.
    W. T. H. Van Oers and J. D. Seagrave, The neutron-deuteron scattering lengths, Phys. Letters 24B: 562–565 (1967);ADSGoogle Scholar
  73. 70a.
    see also J. D. Seagrave et al., Phys. Rev. 174: 313–316 (1968).Google Scholar
  74. 71.
    V. K. Gupta, B. S. Bhakar and A. N. Mitra, Electromagnetic form factors of H3 and He3 with realistic potentials, Phys. Rev. 153: 1114–1126 (1967).ADSGoogle Scholar
  75. 72.
    L. I. Schiff, Theory of the electromagnetic form factors of H3 and He3, Phys. Rev. 133: B802–B812 (1964).ADSGoogle Scholar
  76. 73.
    H. Collard, R. Hofstadter, E. B. Hughes, A. Johansson, M. R. Yearian, R. B. Day and R. T. Wagner, Elastic electron scattering from H3 and He3, Phys. Rev. 138: B57–B65 (1965).ADSGoogle Scholar
  77. 74.
    B. S. Bhakar and A. N. Mitra, Three-nucleon parameters with realistic potentials, Phys. Rev. Letters 14: 143–145 (1965).MathSciNetADSGoogle Scholar
  78. 75.
    A. G. Sitenko, V. F. Kharchenko and N. M. Petrov, On the effect of two-nucleon potential shape on n-d scattering length, Phys. Letters 21: 54–57 (1966).ADSGoogle Scholar
  79. 76.
    V. F. Kharchenko, N. M. Petrov and S. A. Storozhenko, Binding energy of H3 and n-d scattering length with separable potentials, Nucl. Phys. A106: 464–475 (1967).Google Scholar
  80. 77.
    J. Borysowicz and J. Dabrowski, Ground state of H3 with separable potential with hard shell repulsion, Phys. Letters 24B: 125–128 (1967).ADSGoogle Scholar
  81. 78.
    R. D. Puff, Ground state properties of nuclear matter, Ann. Phys. (N. Y.) 13: 317–358 (1961).ADSzbMATHGoogle Scholar
  82. 79.
    G. L. Schrenk, and A. N. Mitra, Tensor force, hard-core, and three-body parameters, Phys. Rev. Letters 19: 530–532 (1967).ADSGoogle Scholar
  83. 80.
    G. L. Schrenk and A. N. Mitra, Analysis of three-nucleon parameters with two-nucleon forces; (to be published).Google Scholar
  84. 81.
    A. N. Mitra, in Proc. Symposium on Light Nuclei, Brela, Yugoslavia, 1967; (G. Paic and I. Slaus, eds.), Gordon-Breach, London (1968).Google Scholar
  85. 82.
    A. C. Phillips, Consistency of low-energy three-nucleon observables and separable interaction model, Nucl. Phys. A107: 209–216 (1968).Google Scholar
  86. 83.
    H. P. Noyes, in Conf. on three-particle scattering in quantum mechanics, Texas A and M, April (1968).Google Scholar
  87. 84.
    L. M. Delves and J. M. Blatt, Three-nucleon calculations with realistic local potentials, Nucl. Phys. A98: 503–527 (1967).Google Scholar
  88. 85.
    B. Davies, Three-nucleon problem with Hamada potential, Nucl. Phys. A103: 165–176 (1967).Google Scholar
  89. 86.
    H. A. Bethe, in Proc. Int. Conf. Nucl. Structure, Tokyo (1967).Google Scholar
  90. 87.
    Yu. M. Shirokov, Relativistic corrections to phenomenological Hamiltonians, (trans.): Soviet Physics JETP 9: 330–332 (1959).MathSciNetGoogle Scholar
  91. 88.
    V. K. Gupta, B. S. Bhakar and A. N. Mitra, Relativistic corrections to the triton binding energy, Phys. Rev. Letters 15: 974–976 (1965).ADSGoogle Scholar
  92. 89.
    V. K. Gupta and A. N. Mitra, Coulomb energy and the mass difference of H3 and He3, Phys. Utters 24B: 27–29 (1967).ADSGoogle Scholar
  93. 90.
    V. A. Alessandrini, F. H. Fanchiotti and C. A. Garcia, Faddeév equations and Coulomb effects in He3, Phys. Rev. 170: 935–945 (1968).ADSGoogle Scholar
  94. 91.
    K. Okamoto and C. Lucas, Coulomb energy of He3 and local and nonlocal potentials and three-nucleon system, Phys. Letters 26B: 188–190 (1968).ADSGoogle Scholar
  95. 92.
    K. Okamoto and C. Lucas, Electromagnetic energy difference of H3 and He3 and charge symmetry of nuclear forces, Nucl. Phys. B2: 347–359 (1967).ADSGoogle Scholar
  96. 93.
    A. J. Jaffe and A. S. Reiner, Binding energies and charge radii of H3 and He3, Weizmarin Institute Preprint (1968).Google Scholar
  97. 94.
    L. M. Delves, in Proc. Symposium on Light Nuclei, Brela, Yugoslavia, 1967; (G. Paic and I. Slauseds.), Gordon-Breach, London (1968).Google Scholar
  98. 95.
    C. de Vries, R. Hofstadter, A. Johansson and R. Herman, Inelastic electron-deuteron scattering experiments and nucleon structure, Phys. Rev. 134: B848–B859 (1965).Google Scholar
  99. 96.
    V. N. Fetisov, A. N. Gorbunov and A. T. Varfolomeev, Nuclear photoeffect on three-particle nuclei, Nucl. Phys. 71: 305–342 (1965).Google Scholar
  100. 97.
    I. M. Barbour and A. C. Phillips, Photodisintegration of three-particle nuclei, Phys. Rev. Letters 19: 1388–1390 (1967).ADSGoogle Scholar
  101. 98.
    J. S. O’Connell and F. Prats, Photodisintegration of the 3N system in a separable potential model, Phys. Letters 26B: 197–200 (1968).ADSGoogle Scholar
  102. 99.
    L. M. Delves, Low-energy photodisintegration of H3 and He3 and neutron-deuteron scattering, Phys. Rev. 118: 1318–1322 (1960);ADSGoogle Scholar
  103. 99a.
    A. C. Phillips, Radiative n-d capture and bound and scattering states of three-nucleon systems, Phys. Rev. 170: 952–957 (1968).ADSGoogle Scholar
  104. 100.
    M. Bander, Three-nucleon problem with separable potentials, Phys. Rev. 138: B322–B325 (1965).MathSciNetADSGoogle Scholar
  105. 101.
    R. Aaron, R. D. Amado and Y. Y. Yam, Model three-body problem, Phys. Rev. 136: B650–B659 (1964).ADSGoogle Scholar
  106. 102.
    K. Okamoto and B. Davies, Note on the existence of the trineutron, Phys. Letters 24B: 18–21 (1967).ADSGoogle Scholar
  107. 103.
    L. Lovitch and S. Rosati, University of Pisa preprint (1966).Google Scholar
  108. 104.
    H. Jacob and V. K. Gupta, Existence of trineutron, Phys. Rev. 174 (4): (1968).Google Scholar
  109. 105.
    Yu. A. Simonov, The three-body problem—a complete set of angular functions; (trans.): Soviet J. Nucl. Phys. 3: 461–466 (1966).MathSciNetGoogle Scholar
  110. 106.
    Yu. A. Simonov and A. M. Badalyan, Binding energy and wave functions for H3 and He3; (trans.): Soviet J. Nucl. Phys. 5: 60–68 (1967).Google Scholar
  111. 107.
    Yu. A. Simonov and V. V. Pustovalov, A complete set of angular functions for the three-body problem for an arbitrary orbital angular momentum; (trans.): Soviet Physical JETP 24: 230–239 (1967).ADSGoogle Scholar
  112. 108.
    S. K. Monga, Ph. D. Thesis, Delhi University (1967); unpublished.Google Scholar
  113. 109.
    J. Hetherington and L. Schick, Multiple scattering analysis of low-energy elastic K +-d scattering with separable potentials, Phys. Rev. 137: B935–B948 (1965).ADSGoogle Scholar
  114. 110.
    J. Hetherington and L. Schick, Low-energy K -d scattering with separable potentials, Phys. Rev. 138, B1411–B1420 (1965).ADSGoogle Scholar
  115. 111.
    H. Hebach, P. Henneberg and H. Kummel, Three-body model of He6, Phys. Letters 24B: 134–136 (1967).ADSGoogle Scholar
  116. 112.
    M. S. Shah and A. N. Mitra, Faddeév treatment of Li8 with a separable potential; (submitted to Phys. Rev.). Google Scholar
  117. 113.
    P. Wackman and N. Austern, A Three body model of Li6 Nucl. Phys. 30: 529–567 (1962).Google Scholar
  118. 114.
    S. K. Monga and A. N. Mitra, Three-body analysis of A-A force through the binding energies of double hyperfragments, Nuovo Cimento 42A: 1004–1008 (1966).ADSGoogle Scholar
  119. 115.
    D. R. Harrington, Separable potentials and Coulomb interactions, Phys. Rev. 139: B691–B695 (1965).MathSciNetADSGoogle Scholar
  120. 116.
    S. K. Monga, Three-body calculations of Be9 with separable potentials, Phys. Rev. 160: 846–852 (1967).ADSGoogle Scholar
  121. 117.
    D. R. Harrington, 3α model for C12, Phys. Rev. 147: 685–688 (1967).ADSGoogle Scholar
  122. 118.
    B. S. Bhakar and R. J. McCarthy, Three-body correlations in reaction matrix calculations, Phys. Rev. 164: 1343–1353 (1967).ADSGoogle Scholar
  123. 119.
    H. A. Bethe, Three-body correlations in nuclear matter, Phys. Rev. 138: B804–B822 (1965).ADSGoogle Scholar
  124. 120.
    M. McMillan, On the Symmetric S- and D- state components of the triton wave function, Nucl. Phys. A105: 649–664 (1967).Google Scholar
  125. G. M. Bailey, G. M. Griffiths and T. W. Donnelly, The photodisintegration of He3 from a direct capture model of the d(p, γ) He3 reaction, Nucl. Phys. A94: 502–512 (1967).Google Scholar
  126. 121.
    A. N. Mitra, Model for two-pion and three-pion resonances, Phys. Rev. 127: 1342–1349 (1962).ADSGoogle Scholar
  127. 122.
    A. Ahmedzadeh and J. A. Tjon, New reduction of Faddeév equations and application to pion as a 3π bound state, Phys. Rev. 139: B1085–B1092 (1965).ADSGoogle Scholar
  128. 123.
    D. Freedman, C. Lovelace and J. Namyslowski, Practical theory of three-particle states, II. Relativistic, spin zero, Nuovo Cimento 43A: 258–324 (1966).ADSGoogle Scholar
  129. 124.
    V. A. Alessandrini and R. L. Omnes, Three particle scattering—a relativistic theory, Phys. Rev. 139: B167–B178 (1965).MathSciNetADSGoogle Scholar
  130. 125.
    R. Blankenbecler and R. Sugar, Linear integral equations for relativistic multichannel scattering, Phys. Rev. 142: 1051–1059 (1966).MathSciNetADSGoogle Scholar
  131. 126.
    M. Gell-Mann, A schematic model of baryons and mesons, Phys. Letters 8: 214–215 (1964).ADSGoogle Scholar
  132. 127.
    R. H. Dalitz in “High-Energy Physics” (M. Jacob and C. deWitt, eds.), Gordon-Breach, New York (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • A. N. Mitra

There are no affiliations available

Personalised recommendations