Advances in Nuclear Physics pp 1-70 | Cite as

# The Nuclear Three-Body Problem

## Abstract

When one speaks of the three-body problem, the first characteristic that comes to mind is its “insolubility.” This describes the situation for the helium atom whose Schrödinger equation does not admit of an exact solution in the sense, say, of the corresponding hydrogen atom problem. The feature of insolubility thus is intimately associated with the very law of force—the Coulomb force—which so accurately describes the behavior of atomic systems. If this law were replaced by something simpler, say the harmonic oscillator force, insolubility would certainly not be a problem any more, though presumably more serious (physical) problems would arise. However, thanks to our better knowledge of atomic systems, this freedom simply does not exist. Therefore, the best the theoretical physicist can do with atomic three-body systems is to devise powerful approximation methods to obtain numerically accurate results for comparison with experiment. No one would seriously expect these methods, *by themselves*, to throw any new light over what is already known on the basic electromagnetic low of interaction which just happens to be too well established.

## Keywords

Spectator Function Schrodinger Equation Electromagnetic Form Factor Separable Potential Faddeev Equation## Preview

Unable to display preview. Download preview PDF.

## References

- 1.T. Hamada and I. D. Johnston, A potential model representation of two-nucleon data below 315 MeV,
*Nucl. Phys.***34**, 382–403 (1962).Google Scholar - 2.J. M. Blatt and L. M. Delves, Further results on the binding energy of the triton,
*Phys. Rev. Letters***12**: 542–546 (1964).ADSGoogle Scholar - 3.L. D. Faddeév, Scattering theory of a three-particle system Trans:
*Soviet Phys. JETP***12**: 1014–1019 (1961).Google Scholar - 4.H. A. Bethe, Invited talk at the International Symposium on Contemporary Physics, International Center for Theoretical Physics, TRIESTE, June 1968; (to be published).Google Scholar
- 5.G. Skoroniakov and K. Ter Martirosian, Three-body problem for short-range forces, I, Scattering of low-energy neutrons by deuterons, (Trans):
*Soviet Phys. JETP***4**: 648–661 (1957).Google Scholar - 6.L. Eyges, Quantum mechanical three-body problem,
*Phys. Rev.***115**: 1643–1655 (1959).MathSciNetADSzbMATHGoogle Scholar - 7.Y. Yamaguchi, Two-nucleon problem when the potential is non-local but separable, I,
*Phys. Rev.***95**: 1628–1634 (1954).ADSzbMATHGoogle Scholar - 8.Y. Yamaguchi and Y. Yamaguchi, Two-nucleon problem when the potential is non-local but separable II,
*Phys. Rev.***95**: 1635–1643 (1954).ADSGoogle Scholar - 9.A. N. Mitra, Three-body problem with separable potentials (I): Bound States,
*Nucl. Phys.***32**: 529–542 (1962).zbMATHGoogle Scholar - 10.C. Lovelace, Practical theory of three-particle states. I. Non relativistic,
*Phys. Rev.***135**: B1225–B1249 (1964).MathSciNetADSGoogle Scholar - 11.S. Weinberg, Systematic solution of multiparticle scattering problems,
*Phys. Rev.***133**: B232–B256 (1964).MathSciNetADSGoogle Scholar - 12.M. L. Goldberger and K. M. Watson, “Collision Theory,” John Wiley and Sons, Inc., New York, 1964, p. 749.zbMATHGoogle Scholar
- 13.K. M. Watson and J. Nuttall, “Topics in Several Particle Dynamics,” Holden-Day, Inc., San Francisco, 1967.Google Scholar
- 14.R. D. Amado, Soluble problems in scattering from compound systems,
*Phys. Rev.***132**: 485–494 (1963).MathSciNetADSzbMATHGoogle Scholar - 15.
- 16.A. N. Mitra and V. S. Bhasin, Three-body problem with separable potentials, II,
*n-d*Scattering,*Phys. Rev.***131**: 1265–1271 (1963).ADSGoogle Scholar - 17.A. G. Sitenko and V. F. Kharchenko, On the binding and scattering of the three-nucleon system,
*Nucl. Phys.***49**: 15–28 (1963).Google Scholar - 18.I. Duck
*in*Advances in Nuclear Physics (M. Baranger and E. Vogt, eds.) Vol. I, pp. 341–410, Plenum Press, New York (1968).Google Scholar - 19.R. Aaron, R. D. Amado and Y. Y. Yam, Calculations of neutron-deuteron scattering,
*Phys. Rev.***140**: B1291–B1300 (1965).ADSGoogle Scholar - 20.A. C. Phillips, An exact calculation of the break-up of deuterons by neutrons,
*Phys. Letters***20**: 50–52 (1966).ADSGoogle Scholar - 21.R. Aaron and R. D. Amado, Theory of the reaction
*n*+*d*→*n*+*n*+*p, Phys. Rev*.**150**: 857–866 (1966).ADSGoogle Scholar - 22.J. A. Wheeler, On the mathematical description of light nuclei by the method of resonating group structures,
*Phys. Rev.***52**: 1107–1122 (1937).ADSzbMATHGoogle Scholar - 23.J. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics,” John Wiley and Sons, Inc., New York (1952).zbMATHGoogle Scholar
- 24.
- 25.R. Sugar and R. Blankenbecler, Variational upper and lower bounds for multichannel scattering,
*Phys. Rev.***136**: B472–B491 (1964).MathSciNetADSGoogle Scholar - 26.J. Gillespie, Separable operators in scattering theory,
*Phys. Rev.***160**: 1432–1440 (1967).ADSGoogle Scholar - 27.
- 28.A. N. Mitra, Analyticity of amplitudes and separable potentials,
*Phys. Rev.***123**: 1892–1895 (1961).MathSciNetADSzbMATHGoogle Scholar - 29.J. H. Naqvi, Separable non-local nuclear potential for singlet states,
*Nucl. Phys.***58**: 289–298 (1964).Google Scholar - 30.V. K. Gupta, Ph. D. Thesis, Delhi University, 1967; unpublished.Google Scholar
- 31.F. Tabakin, Short-range correlations and the three-body binding energy,
*Phys. Rev.***137**: B75–B79 (1965).ADSGoogle Scholar - 32.F. Tabakin, An effective interaction for nuclear Hartree-Fock calculations,
*Ann. Phys*. (N. Y.)**30**: 51–94 (1964).ADSGoogle Scholar - 33.A. N. Mitra and J. H. Naqvi, A separable potential for the two-nucleon (
*T*= 1) interaction,*Nucl. Phys.***25**: 307–316 (1961).MathSciNetGoogle Scholar - 34.
- 35.A. N. Mitra, B. S. Bhakar, and V. S. Bhasin, A potential for low-energy
*α*-N interaction,*Nucl. Phys.***38**: 316–321 (1962).Google Scholar - 36.S. K. Monga, Hypertriton binding energy with NLS potentials,
*Nuovo Cimento***41B**: 164–173 (1966);ADSGoogle Scholar - 36a.also, I. Sh. Vashakidze and C. A. Chilasvilli, binding energy of
_{∧}H^{3}with nonlocal separable potentials, (trans):*Soviet Phys. Doklady***9**: 576–578 (1965).ADSGoogle Scholar - 37.J. Hetherington and L. Schick, Low-energy ∧-
*d*scattering and the Hypertriton with separable potentials,*Phys. Rev.***139**: B1164–B1169 (1965).ADSGoogle Scholar - 38.J. J. de Swart and C. Dullemond, Effective range theory and the low-energy hyperon-nucleon interactions,
*Ann. Phys*. (N.Y.)**19**: 458–495 (1962).ADSGoogle Scholar - 39.
- 39a.E. Feenberg, Neutron-proton interaction, Part I, The binding energies of H and He isotopes,
*Phys. Rev.***47**: 850–856 (1935).ADSzbMATHGoogle Scholar - 40.R. Omnes, Three-body scattering amplitudes, I. Separation of angular momentum,
*Phys. Rev.***134**: B1358–B1364 (1964).MathSciNetADSGoogle Scholar - 41.J. L. Basdevant and R. E. Kreps, Relativistic three-pion calculation, I,
*Phys. Rev.***141**: 1398–1403 (1966).MathSciNetADSGoogle Scholar - 42.H. P. Noyes and T. Osborn, Reduction of finite range three-body problem in two variables,
*Phys. Rev. Letters***17**: 215–218 (1966).ADSGoogle Scholar - 43.G. Derrick and J. M. Blatt, Classification of triton wave functions,
*Nucl. Phys.*8: 310–324 (1958).Google Scholar - 44.T. A. Osborn, SLAC Report No. 79; Ph. D. Thesis, Stanford, 1968.Google Scholar
- 45.J. Ball and D. Y. Wong, Solution of Faddeév equation for short-range potentials,
*Phys. Rev.***169**: 1362–1364 (1968).ADSGoogle Scholar - 46.A. N. Mitra, Three body model of stripping and the validity of DWBA,
*Phys. Rev.***139**: B1472–1478 (1965).MathSciNetADSGoogle Scholar - 47.N. Austern,
*in*“Fast Neutron Physics II” (J. B. Marion and J. L. Fowler, ed.) Interscience Publishers, Inc., New York (1962).Google Scholar - 48.W. Tobocman, “Theory of Direct Nuclear Reactions,” Oxford University Press, London (1961).Google Scholar
- 49.S. T. Butler, “Nuclear Stripping Reactions,” John Wiley and Sons, Inc., New York (1961).Google Scholar
- 50.R. Aaron and P. E. Shanley, Calculations of deuteron stripping in a soluble model,
*Phys. Rev.***142**: 608–611 (1966).ADSGoogle Scholar - 51.E. P. Wigner, On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei,
*Phys. Rev.***51**: 106–119 (1937).ADSGoogle Scholar - 52.B. S. Bhakar, Ph. D. Thesis, Delhi University, 1965; unpublished.Google Scholar
- 53.L. P. Kok, G. Erens and R. Van Wageningen, Nucleon-nucleon interaction and triton binding energy; University of Groningen, preprint, 1968.Google Scholar
- 54.R. Bryan and B. L. Scott, Nucleon nucleon scattering from one boson exchange potentials,
*Phys. Rev.***135**: B434–B450 (1964).ADSGoogle Scholar - 55.J. J. Sakurai, Theory of strong interactions,
*Ann. Phys*. (N. Y.)**11**: 1–48 (1960).MathSciNetADSGoogle Scholar - 56.M. Gell-Mann,
*in*“Eight-fold Way” (M. Gell-Mann and Y. Neeman, eds.) W. A. Benjamin, Inc., New York (1965).Google Scholar - 57.M. Verde,
*in*“Handbuch der Physik” (S. Flugge, ed.) Vol. 39, p. 170, Springer Verlag, Berlin (1957).Google Scholar - 58.R. G. Sachs, “Nuclear Theory,” Addison Wesley Publishing Co., Inc. Cambridge, Mass., (1952).Google Scholar
- 59.G. Derrick, Kinetic and potential energy matrix elements for the triton,
*Nucl. Phys.***16**: 405–422 (1960).zbMATHGoogle Scholar - 60.L. Cohen and J. B. Willis, Wave functions and matrix elements for triton,
*Nucl. Phys.***32**: 114–127 (1962).Google Scholar - 61.A. N. Mitra, P-wave theory of three nucleon states,
*Phys. Rev.***150**: 839–846 (1966).ADSGoogle Scholar - 62.A. N. Mitra and V. S. Bhasin, Existence of the trineutron,
*Phys. Rev. Letters***16**: 523–526 (1966).ADSGoogle Scholar - 63.V. Adjacic, M. Cerineo, B. Lalovic, G. Paic, I. Slaus, and P. Tomas, Reaction H
^{3}(*n, p*) 3*n*at*E*_{n}= 14.4 MeV,*Phys. Rev. Letters***14**: 444–449 (1965).ADSGoogle Scholar - 64.
- 65.A. N. Mitra, G. L. Schrenk and V. S. Bhasin, Tensor force and zero energy
*n-d*scattering,*Ann. Phys*. (N. Y.)**40**: 357–373 (1966).ADSGoogle Scholar - 66.R. Aaron, R. D. Amado and Y. Y. Yam, Calculation of
*n-d*scattering and the triton binding energy,*Phys. Rev. Letters***13**: 574–576 (1964).ADSGoogle Scholar - 67.V. S. Bhasin and G. L. Schrenk and A. N. Mitra, Neutron-deuteron scattering at low energies,
*Phys. Rev.***137**: B398–B401 (1965).ADSGoogle Scholar - 68.A. C. Phillips, Application of the Faddeév equations to the three-nucleon problem,
*Phys. Rev.***142**: 984–989 (1966).MathSciNetADSGoogle Scholar - 69.H. S. W. Massey,
*in*Proc. Int. Conf. on Nucl. Forces and the Few-Nucleon Problem, London, 1959 (T. C. Griffith and E. A. Power, eds.), Pergamon Press, Inc., New York (1960).Google Scholar - 70.W. T. H. Van Oers and J. D. Seagrave, The neutron-deuteron scattering lengths,
*Phys. Letters***24B**: 562–565 (1967);ADSGoogle Scholar - 70a.
- 71.V. K. Gupta, B. S. Bhakar and A. N. Mitra, Electromagnetic form factors of H
^{3}and He^{3}with realistic potentials,*Phys. Rev.***153**: 1114–1126 (1967).ADSGoogle Scholar - 72.L. I. Schiff, Theory of the electromagnetic form factors of H
^{3}and He^{3},*Phys. Rev.***133**: B802–B812 (1964).ADSGoogle Scholar - 73.H. Collard, R. Hofstadter, E. B. Hughes, A. Johansson, M. R. Yearian, R. B. Day and R. T. Wagner, Elastic electron scattering from H
^{3}and He^{3},*Phys. Rev.***138**: B57–B65 (1965).ADSGoogle Scholar - 74.B. S. Bhakar and A. N. Mitra, Three-nucleon parameters with realistic potentials,
*Phys. Rev. Letters***14**: 143–145 (1965).MathSciNetADSGoogle Scholar - 75.A. G. Sitenko, V. F. Kharchenko and N. M. Petrov, On the effect of two-nucleon potential shape on
*n-d*scattering length,*Phys. Letters***21**: 54–57 (1966).ADSGoogle Scholar - 76.V. F. Kharchenko, N. M. Petrov and S. A. Storozhenko, Binding energy of H
^{3}and*n-d*scattering length with separable potentials,*Nucl. Phys.***A106**: 464–475 (1967).Google Scholar - 77.J. Borysowicz and J. Dabrowski, Ground state of H
^{3}with separable potential with hard shell repulsion,*Phys. Letters***24B**: 125–128 (1967).ADSGoogle Scholar - 78.R. D. Puff, Ground state properties of nuclear matter,
*Ann. Phys*. (N. Y.)**13**: 317–358 (1961).ADSzbMATHGoogle Scholar - 79.G. L. Schrenk, and A. N. Mitra, Tensor force, hard-core, and three-body parameters,
*Phys. Rev. Letters***19**: 530–532 (1967).ADSGoogle Scholar - 80.G. L. Schrenk and A. N. Mitra, Analysis of three-nucleon parameters with two-nucleon forces; (to be published).Google Scholar
- 81.A. N. Mitra,
*in*Proc. Symposium on Light Nuclei, Brela, Yugoslavia, 1967; (G. Paic and I. Slaus, eds.), Gordon-Breach, London (1968).Google Scholar - 82.A. C. Phillips, Consistency of low-energy three-nucleon observables and separable interaction model,
*Nucl. Phys.***A107**: 209–216 (1968).Google Scholar - 83.H. P. Noyes,
*in*Conf. on three-particle scattering in quantum mechanics, Texas A and M, April (1968).Google Scholar - 84.L. M. Delves and J. M. Blatt, Three-nucleon calculations with realistic local potentials,
*Nucl. Phys.***A98**: 503–527 (1967).Google Scholar - 85.B. Davies, Three-nucleon problem with Hamada potential,
*Nucl. Phys.***A103**: 165–176 (1967).Google Scholar - 86.H. A. Bethe,
*in*Proc. Int. Conf. Nucl. Structure, Tokyo (1967).Google Scholar - 87.Yu. M. Shirokov, Relativistic corrections to phenomenological Hamiltonians, (trans.):
*Soviet Physics JETP***9**: 330–332 (1959).MathSciNetGoogle Scholar - 88.V. K. Gupta, B. S. Bhakar and A. N. Mitra, Relativistic corrections to the triton binding energy,
*Phys. Rev. Letters***15**: 974–976 (1965).ADSGoogle Scholar - 89.V. K. Gupta and A. N. Mitra, Coulomb energy and the mass difference of H
^{3}and He^{3},*Phys. Utters***24B**: 27–29 (1967).ADSGoogle Scholar - 90.V. A. Alessandrini, F. H. Fanchiotti and C. A. Garcia, Faddeév equations and Coulomb effects in He
^{3},*Phys. Rev.***170**: 935–945 (1968).ADSGoogle Scholar - 91.K. Okamoto and C. Lucas, Coulomb energy of He
^{3}and local and nonlocal potentials and three-nucleon system,*Phys. Letters***26B**: 188–190 (1968).ADSGoogle Scholar - 92.K. Okamoto and C. Lucas, Electromagnetic energy difference of H
^{3}and He^{3}and charge symmetry of nuclear forces,*Nucl. Phys.***B2**: 347–359 (1967).ADSGoogle Scholar - 93.A. J. Jaffe and A. S. Reiner, Binding energies and charge radii of H
^{3}and He^{3}, Weizmarin Institute Preprint (1968).Google Scholar - 94.L. M. Delves,
*in*Proc. Symposium on Light Nuclei, Brela, Yugoslavia, 1967; (G. Paic and I. Slauseds.), Gordon-Breach, London (1968).Google Scholar - 95.C. de Vries, R. Hofstadter, A. Johansson and R. Herman, Inelastic electron-deuteron scattering experiments and nucleon structure,
*Phys. Rev.***134**: B848–B859 (1965).Google Scholar - 96.V. N. Fetisov, A. N. Gorbunov and A. T. Varfolomeev, Nuclear photoeffect on three-particle nuclei,
*Nucl. Phys.***71**: 305–342 (1965).Google Scholar - 97.I. M. Barbour and A. C. Phillips, Photodisintegration of three-particle nuclei,
*Phys. Rev. Letters***19**: 1388–1390 (1967).ADSGoogle Scholar - 98.J. S. O’Connell and F. Prats, Photodisintegration of the 3
*N*system in a separable potential model,*Phys. Letters***26B**: 197–200 (1968).ADSGoogle Scholar - 99.L. M. Delves, Low-energy photodisintegration of H
^{3}and He^{3}and neutron-deuteron scattering,*Phys. Rev*.**118**: 1318–1322 (1960);ADSGoogle Scholar - 99a.A. C. Phillips, Radiative
*n-d*capture and bound and scattering states of three-nucleon systems,*Phys. Rev.***170**: 952–957 (1968).ADSGoogle Scholar - 100.M. Bander, Three-nucleon problem with separable potentials,
*Phys. Rev.***138**: B322–B325 (1965).MathSciNetADSGoogle Scholar - 101.R. Aaron, R. D. Amado and Y. Y. Yam, Model three-body problem,
*Phys. Rev.***136**: B650–B659 (1964).ADSGoogle Scholar - 102.K. Okamoto and B. Davies, Note on the existence of the trineutron,
*Phys. Letters***24B**: 18–21 (1967).ADSGoogle Scholar - 103.L. Lovitch and S. Rosati, University of Pisa preprint (1966).Google Scholar
- 104.
- 105.Yu. A. Simonov, The three-body problem—a complete set of angular functions; (trans.):
*Soviet J. Nucl. Phys*.**3**: 461–466 (1966).MathSciNetGoogle Scholar - 106.Yu. A. Simonov and A. M. Badalyan, Binding energy and wave functions for H
^{3}and He^{3}; (trans.):*Soviet J. Nucl. Phys*.**5**: 60–68 (1967).Google Scholar - 107.Yu. A. Simonov and V. V. Pustovalov, A complete set of angular functions for the three-body problem for an arbitrary orbital angular momentum; (trans.):
*Soviet Physical JETP***24**: 230–239 (1967).ADSGoogle Scholar - 108.S. K. Monga, Ph. D. Thesis, Delhi University (1967); unpublished.Google Scholar
- 109.J. Hetherington and L. Schick, Multiple scattering analysis of low-energy elastic
*K*^{+}-*d*scattering with separable potentials,*Phys. Rev.***137**: B935–B948 (1965).ADSGoogle Scholar - 110.J. Hetherington and L. Schick, Low-energy
*K*^{‒}-*d*scattering with separable potentials,*Phys. Rev.***138**, B1411–B1420 (1965).ADSGoogle Scholar - 111.H. Hebach, P. Henneberg and H. Kummel, Three-body model of He
^{6},*Phys. Letters***24B**: 134–136 (1967).ADSGoogle Scholar - 112.M. S. Shah and A. N. Mitra, Faddeév treatment of Li
^{8}with a separable potential; (submitted to*Phys. Rev.).*Google Scholar - 113.P. Wackman and N. Austern, A Three body model of Li
^{6}*Nucl. Phys*.**30**: 529–567 (1962).Google Scholar - 114.S. K. Monga and A. N. Mitra, Three-body analysis of A-A force through the binding energies of double hyperfragments,
*Nuovo Cimento***42A**: 1004–1008 (1966).ADSGoogle Scholar - 115.D. R. Harrington, Separable potentials and Coulomb interactions,
*Phys. Rev.***139**: B691–B695 (1965).MathSciNetADSGoogle Scholar - 116.S. K. Monga, Three-body calculations of Be
^{9}with separable potentials,*Phys. Rev.***160**: 846–852 (1967).ADSGoogle Scholar - 117.
- 118.B. S. Bhakar and R. J. McCarthy, Three-body correlations in reaction matrix calculations,
*Phys. Rev.***164**: 1343–1353 (1967).ADSGoogle Scholar - 119.H. A. Bethe, Three-body correlations in nuclear matter,
*Phys. Rev.***138**: B804–B822 (1965).ADSGoogle Scholar - 120.M. McMillan, On the Symmetric
*S*- and*D*- state components of the triton wave function,*Nucl. Phys.***A105**: 649–664 (1967).Google Scholar - G. M. Bailey, G. M. Griffiths and T. W. Donnelly, The photodisintegration of He
^{3}from a direct capture model of the*d*(*p*,*γ*) He^{3}reaction,*Nucl. Phys.***A94**: 502–512 (1967).Google Scholar - 121.A. N. Mitra, Model for two-pion and three-pion resonances,
*Phys. Rev.***127**: 1342–1349 (1962).ADSGoogle Scholar - 122.A. Ahmedzadeh and J. A. Tjon, New reduction of Faddeév equations and application to pion as a 3
*π*bound state,*Phys. Rev.***139**: B1085–B1092 (1965).ADSGoogle Scholar - 123.D. Freedman, C. Lovelace and J. Namyslowski, Practical theory of three-particle states, II. Relativistic, spin zero,
*Nuovo Cimento***43A**: 258–324 (1966).ADSGoogle Scholar - 124.V. A. Alessandrini and R. L. Omnes, Three particle scattering—a relativistic theory,
*Phys. Rev.***139**: B167–B178 (1965).MathSciNetADSGoogle Scholar - 125.R. Blankenbecler and R. Sugar, Linear integral equations for relativistic multichannel scattering,
*Phys. Rev.***142**: 1051–1059 (1966).MathSciNetADSGoogle Scholar - 126.M. Gell-Mann, A schematic model of baryons and mesons,
*Phys. Letters***8**: 214–215 (1964).ADSGoogle Scholar - 127.R. H. Dalitz
*in*“High-Energy Physics” (M. Jacob and C. deWitt, eds.), Gordon-Breach, New York (1965).Google Scholar