Skip to main content

The Nuclear Three-Body Problem

  • Chapter
Advances in Nuclear Physics

Part of the book series: Advances in Nuclear Physics ((ANP))

Abstract

When one speaks of the three-body problem, the first characteristic that comes to mind is its “insolubility.” This describes the situation for the helium atom whose Schrödinger equation does not admit of an exact solution in the sense, say, of the corresponding hydrogen atom problem. The feature of insolubility thus is intimately associated with the very law of force—the Coulomb force—which so accurately describes the behavior of atomic systems. If this law were replaced by something simpler, say the harmonic oscillator force, insolubility would certainly not be a problem any more, though presumably more serious (physical) problems would arise. However, thanks to our better knowledge of atomic systems, this freedom simply does not exist. Therefore, the best the theoretical physicist can do with atomic three-body systems is to devise powerful approximation methods to obtain numerically accurate results for comparison with experiment. No one would seriously expect these methods, by themselves, to throw any new light over what is already known on the basic electromagnetic low of interaction which just happens to be too well established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Hamada and I. D. Johnston, A potential model representation of two-nucleon data below 315 MeV, Nucl. Phys. 34, 382–403 (1962).

    Google Scholar 

  2. J. M. Blatt and L. M. Delves, Further results on the binding energy of the triton, Phys. Rev. Letters 12: 542–546 (1964).

    ADS  Google Scholar 

  3. L. D. Faddeév, Scattering theory of a three-particle system Trans: Soviet Phys. JETP 12: 1014–1019 (1961).

    Google Scholar 

  4. H. A. Bethe, Invited talk at the International Symposium on Contemporary Physics, International Center for Theoretical Physics, TRIESTE, June 1968; (to be published).

    Google Scholar 

  5. G. Skoroniakov and K. Ter Martirosian, Three-body problem for short-range forces, I, Scattering of low-energy neutrons by deuterons, (Trans): Soviet Phys. JETP 4: 648–661 (1957).

    Google Scholar 

  6. L. Eyges, Quantum mechanical three-body problem, Phys. Rev. 115: 1643–1655 (1959).

    MathSciNet  ADS  MATH  Google Scholar 

  7. Y. Yamaguchi, Two-nucleon problem when the potential is non-local but separable, I, Phys. Rev. 95: 1628–1634 (1954).

    ADS  MATH  Google Scholar 

  8. Y. Yamaguchi and Y. Yamaguchi, Two-nucleon problem when the potential is non-local but separable II, Phys. Rev. 95: 1635–1643 (1954).

    ADS  Google Scholar 

  9. A. N. Mitra, Three-body problem with separable potentials (I): Bound States, Nucl. Phys. 32: 529–542 (1962).

    MATH  Google Scholar 

  10. C. Lovelace, Practical theory of three-particle states. I. Non relativistic, Phys. Rev. 135: B1225–B1249 (1964).

    MathSciNet  ADS  Google Scholar 

  11. S. Weinberg, Systematic solution of multiparticle scattering problems, Phys. Rev. 133: B232–B256 (1964).

    MathSciNet  ADS  Google Scholar 

  12. M. L. Goldberger and K. M. Watson, “Collision Theory,” John Wiley and Sons, Inc., New York, 1964, p. 749.

    MATH  Google Scholar 

  13. K. M. Watson and J. Nuttall, “Topics in Several Particle Dynamics,” Holden-Day, Inc., San Francisco, 1967.

    Google Scholar 

  14. R. D. Amado, Soluble problems in scattering from compound systems, Phys. Rev. 132: 485–494 (1963).

    MathSciNet  ADS  MATH  Google Scholar 

  15. R. D. Amado, Theory of the triton wave function, Phys. Rev. 141: 902–913 (1966).

    ADS  Google Scholar 

  16. A. N. Mitra and V. S. Bhasin, Three-body problem with separable potentials, II, n-d Scattering, Phys. Rev. 131: 1265–1271 (1963).

    ADS  Google Scholar 

  17. A. G. Sitenko and V. F. Kharchenko, On the binding and scattering of the three-nucleon system, Nucl. Phys. 49: 15–28 (1963).

    Google Scholar 

  18. I. Duck in Advances in Nuclear Physics (M. Baranger and E. Vogt, eds.) Vol. I, pp. 341–410, Plenum Press, New York (1968).

    Google Scholar 

  19. R. Aaron, R. D. Amado and Y. Y. Yam, Calculations of neutron-deuteron scattering, Phys. Rev. 140: B1291–B1300 (1965).

    ADS  Google Scholar 

  20. A. C. Phillips, An exact calculation of the break-up of deuterons by neutrons, Phys. Letters 20: 50–52 (1966).

    ADS  Google Scholar 

  21. R. Aaron and R. D. Amado, Theory of the reaction n + dn + n + p, Phys. Rev. 150: 857–866 (1966).

    ADS  Google Scholar 

  22. J. A. Wheeler, On the mathematical description of light nuclei by the method of resonating group structures, Phys. Rev. 52: 1107–1122 (1937).

    ADS  MATH  Google Scholar 

  23. J. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics,” John Wiley and Sons, Inc., New York (1952).

    MATH  Google Scholar 

  24. H. A. Bethe, Nuclear many-body problem, Phys. Rev. 103: 1353–1390 (1956).

    ADS  MATH  Google Scholar 

  25. R. Sugar and R. Blankenbecler, Variational upper and lower bounds for multichannel scattering, Phys. Rev. 136: B472–B491 (1964).

    MathSciNet  ADS  Google Scholar 

  26. J. Gillespie, Separable operators in scattering theory, Phys. Rev. 160: 1432–1440 (1967).

    ADS  Google Scholar 

  27. J. S. Ball and D. Y. Wong, Phys. Rev. 169: 1362 (1968).

    ADS  Google Scholar 

  28. A. N. Mitra, Analyticity of amplitudes and separable potentials, Phys. Rev. 123: 1892–1895 (1961).

    MathSciNet  ADS  MATH  Google Scholar 

  29. J. H. Naqvi, Separable non-local nuclear potential for singlet states, Nucl. Phys. 58: 289–298 (1964).

    Google Scholar 

  30. V. K. Gupta, Ph. D. Thesis, Delhi University, 1967; unpublished.

    Google Scholar 

  31. F. Tabakin, Short-range correlations and the three-body binding energy, Phys. Rev. 137: B75–B79 (1965).

    ADS  Google Scholar 

  32. F. Tabakin, An effective interaction for nuclear Hartree-Fock calculations, Ann. Phys. (N. Y.) 30: 51–94 (1964).

    ADS  Google Scholar 

  33. A. N. Mitra and J. H. Naqvi, A separable potential for the two-nucleon (T = 1) interaction, Nucl. Phys. 25: 307–316 (1961).

    MathSciNet  Google Scholar 

  34. J. H. Naqvi, A note on the deuteron magnetic moment, Nucl. Phys. 36: 578–482 (1962).

    Google Scholar 

  35. A. N. Mitra, B. S. Bhakar, and V. S. Bhasin, A potential for low-energy α-N interaction, Nucl. Phys. 38: 316–321 (1962).

    Google Scholar 

  36. S. K. Monga, Hypertriton binding energy with NLS potentials, Nuovo Cimento 41B: 164–173 (1966);

    ADS  Google Scholar 

  37. also, I. Sh. Vashakidze and C. A. Chilasvilli, binding energy of H3 with nonlocal separable potentials, (trans): Soviet Phys. Doklady 9: 576–578 (1965).

    ADS  Google Scholar 

  38. J. Hetherington and L. Schick, Low-energy ∧-d scattering and the Hypertriton with separable potentials, Phys. Rev. 139: B1164–B1169 (1965).

    ADS  Google Scholar 

  39. J. J. de Swart and C. Dullemond, Effective range theory and the low-energy hyperon-nucleon interactions, Ann. Phys. (N.Y.) 19: 458–495 (1962).

    ADS  Google Scholar 

  40. E. P. Wigner, On the mass defect of helium, Phys. Rev. 43: 252–257 (1933);

    ADS  Google Scholar 

  41. E. Feenberg, Neutron-proton interaction, Part I, The binding energies of H and He isotopes, Phys. Rev. 47: 850–856 (1935).

    ADS  MATH  Google Scholar 

  42. R. Omnes, Three-body scattering amplitudes, I. Separation of angular momentum, Phys. Rev. 134: B1358–B1364 (1964).

    MathSciNet  ADS  Google Scholar 

  43. J. L. Basdevant and R. E. Kreps, Relativistic three-pion calculation, I, Phys. Rev. 141: 1398–1403 (1966).

    MathSciNet  ADS  Google Scholar 

  44. H. P. Noyes and T. Osborn, Reduction of finite range three-body problem in two variables, Phys. Rev. Letters 17: 215–218 (1966).

    ADS  Google Scholar 

  45. G. Derrick and J. M. Blatt, Classification of triton wave functions, Nucl. Phys. 8: 310–324 (1958).

    Google Scholar 

  46. T. A. Osborn, SLAC Report No. 79; Ph. D. Thesis, Stanford, 1968.

    Google Scholar 

  47. J. Ball and D. Y. Wong, Solution of Faddeév equation for short-range potentials, Phys. Rev. 169: 1362–1364 (1968).

    ADS  Google Scholar 

  48. A. N. Mitra, Three body model of stripping and the validity of DWBA, Phys. Rev. 139: B1472–1478 (1965).

    MathSciNet  ADS  Google Scholar 

  49. N. Austern, in “Fast Neutron Physics II” (J. B. Marion and J. L. Fowler, ed.) Interscience Publishers, Inc., New York (1962).

    Google Scholar 

  50. W. Tobocman, “Theory of Direct Nuclear Reactions,” Oxford University Press, London (1961).

    Google Scholar 

  51. S. T. Butler, “Nuclear Stripping Reactions,” John Wiley and Sons, Inc., New York (1961).

    Google Scholar 

  52. R. Aaron and P. E. Shanley, Calculations of deuteron stripping in a soluble model, Phys. Rev. 142: 608–611 (1966).

    ADS  Google Scholar 

  53. E. P. Wigner, On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51: 106–119 (1937).

    ADS  Google Scholar 

  54. B. S. Bhakar, Ph. D. Thesis, Delhi University, 1965; unpublished.

    Google Scholar 

  55. L. P. Kok, G. Erens and R. Van Wageningen, Nucleon-nucleon interaction and triton binding energy; University of Groningen, preprint, 1968.

    Google Scholar 

  56. R. Bryan and B. L. Scott, Nucleon nucleon scattering from one boson exchange potentials, Phys. Rev. 135: B434–B450 (1964).

    ADS  Google Scholar 

  57. J. J. Sakurai, Theory of strong interactions, Ann. Phys. (N. Y.) 11: 1–48 (1960).

    MathSciNet  ADS  Google Scholar 

  58. M. Gell-Mann, in “Eight-fold Way” (M. Gell-Mann and Y. Neeman, eds.) W. A. Benjamin, Inc., New York (1965).

    Google Scholar 

  59. M. Verde, in “Handbuch der Physik” (S. Flugge, ed.) Vol. 39, p. 170, Springer Verlag, Berlin (1957).

    Google Scholar 

  60. R. G. Sachs, “Nuclear Theory,” Addison Wesley Publishing Co., Inc. Cambridge, Mass., (1952).

    Google Scholar 

  61. G. Derrick, Kinetic and potential energy matrix elements for the triton, Nucl. Phys. 16: 405–422 (1960).

    MATH  Google Scholar 

  62. L. Cohen and J. B. Willis, Wave functions and matrix elements for triton, Nucl. Phys. 32: 114–127 (1962).

    Google Scholar 

  63. A. N. Mitra, P-wave theory of three nucleon states, Phys. Rev. 150: 839–846 (1966).

    ADS  Google Scholar 

  64. A. N. Mitra and V. S. Bhasin, Existence of the trineutron, Phys. Rev. Letters 16: 523–526 (1966).

    ADS  Google Scholar 

  65. V. Adjacic, M. Cerineo, B. Lalovic, G. Paic, I. Slaus, and P. Tomas, Reaction H3(n, p) 3n at E n = 14.4 MeV, Phys. Rev. Letters 14: 444–449 (1965).

    ADS  Google Scholar 

  66. B. S. Bhakar, The triton problem with tensor forces, Nucl. Phys. 46: 572–576 (1963).

    Google Scholar 

  67. A. N. Mitra, G. L. Schrenk and V. S. Bhasin, Tensor force and zero energy n-d scattering, Ann. Phys. (N. Y.) 40: 357–373 (1966).

    ADS  Google Scholar 

  68. R. Aaron, R. D. Amado and Y. Y. Yam, Calculation of n-d scattering and the triton binding energy, Phys. Rev. Letters 13: 574–576 (1964).

    ADS  Google Scholar 

  69. V. S. Bhasin and G. L. Schrenk and A. N. Mitra, Neutron-deuteron scattering at low energies, Phys. Rev. 137: B398–B401 (1965).

    ADS  Google Scholar 

  70. A. C. Phillips, Application of the Faddeév equations to the three-nucleon problem, Phys. Rev. 142: 984–989 (1966).

    MathSciNet  ADS  Google Scholar 

  71. H. S. W. Massey, in Proc. Int. Conf. on Nucl. Forces and the Few-Nucleon Problem, London, 1959 (T. C. Griffith and E. A. Power, eds.), Pergamon Press, Inc., New York (1960).

    Google Scholar 

  72. W. T. H. Van Oers and J. D. Seagrave, The neutron-deuteron scattering lengths, Phys. Letters 24B: 562–565 (1967);

    ADS  Google Scholar 

  73. see also J. D. Seagrave et al., Phys. Rev. 174: 313–316 (1968).

    Google Scholar 

  74. V. K. Gupta, B. S. Bhakar and A. N. Mitra, Electromagnetic form factors of H3 and He3 with realistic potentials, Phys. Rev. 153: 1114–1126 (1967).

    ADS  Google Scholar 

  75. L. I. Schiff, Theory of the electromagnetic form factors of H3 and He3, Phys. Rev. 133: B802–B812 (1964).

    ADS  Google Scholar 

  76. H. Collard, R. Hofstadter, E. B. Hughes, A. Johansson, M. R. Yearian, R. B. Day and R. T. Wagner, Elastic electron scattering from H3 and He3, Phys. Rev. 138: B57–B65 (1965).

    ADS  Google Scholar 

  77. B. S. Bhakar and A. N. Mitra, Three-nucleon parameters with realistic potentials, Phys. Rev. Letters 14: 143–145 (1965).

    MathSciNet  ADS  Google Scholar 

  78. A. G. Sitenko, V. F. Kharchenko and N. M. Petrov, On the effect of two-nucleon potential shape on n-d scattering length, Phys. Letters 21: 54–57 (1966).

    ADS  Google Scholar 

  79. V. F. Kharchenko, N. M. Petrov and S. A. Storozhenko, Binding energy of H3 and n-d scattering length with separable potentials, Nucl. Phys. A106: 464–475 (1967).

    Google Scholar 

  80. J. Borysowicz and J. Dabrowski, Ground state of H3 with separable potential with hard shell repulsion, Phys. Letters 24B: 125–128 (1967).

    ADS  Google Scholar 

  81. R. D. Puff, Ground state properties of nuclear matter, Ann. Phys. (N. Y.) 13: 317–358 (1961).

    ADS  MATH  Google Scholar 

  82. G. L. Schrenk, and A. N. Mitra, Tensor force, hard-core, and three-body parameters, Phys. Rev. Letters 19: 530–532 (1967).

    ADS  Google Scholar 

  83. G. L. Schrenk and A. N. Mitra, Analysis of three-nucleon parameters with two-nucleon forces; (to be published).

    Google Scholar 

  84. A. N. Mitra, in Proc. Symposium on Light Nuclei, Brela, Yugoslavia, 1967; (G. Paic and I. Slaus, eds.), Gordon-Breach, London (1968).

    Google Scholar 

  85. A. C. Phillips, Consistency of low-energy three-nucleon observables and separable interaction model, Nucl. Phys. A107: 209–216 (1968).

    Google Scholar 

  86. H. P. Noyes, in Conf. on three-particle scattering in quantum mechanics, Texas A and M, April (1968).

    Google Scholar 

  87. L. M. Delves and J. M. Blatt, Three-nucleon calculations with realistic local potentials, Nucl. Phys. A98: 503–527 (1967).

    Google Scholar 

  88. B. Davies, Three-nucleon problem with Hamada potential, Nucl. Phys. A103: 165–176 (1967).

    Google Scholar 

  89. H. A. Bethe, in Proc. Int. Conf. Nucl. Structure, Tokyo (1967).

    Google Scholar 

  90. Yu. M. Shirokov, Relativistic corrections to phenomenological Hamiltonians, (trans.): Soviet Physics JETP 9: 330–332 (1959).

    MathSciNet  Google Scholar 

  91. V. K. Gupta, B. S. Bhakar and A. N. Mitra, Relativistic corrections to the triton binding energy, Phys. Rev. Letters 15: 974–976 (1965).

    ADS  Google Scholar 

  92. V. K. Gupta and A. N. Mitra, Coulomb energy and the mass difference of H3 and He3, Phys. Utters 24B: 27–29 (1967).

    ADS  Google Scholar 

  93. V. A. Alessandrini, F. H. Fanchiotti and C. A. Garcia, Faddeév equations and Coulomb effects in He3, Phys. Rev. 170: 935–945 (1968).

    ADS  Google Scholar 

  94. K. Okamoto and C. Lucas, Coulomb energy of He3 and local and nonlocal potentials and three-nucleon system, Phys. Letters 26B: 188–190 (1968).

    ADS  Google Scholar 

  95. K. Okamoto and C. Lucas, Electromagnetic energy difference of H3 and He3 and charge symmetry of nuclear forces, Nucl. Phys. B2: 347–359 (1967).

    ADS  Google Scholar 

  96. A. J. Jaffe and A. S. Reiner, Binding energies and charge radii of H3 and He3, Weizmarin Institute Preprint (1968).

    Google Scholar 

  97. L. M. Delves, in Proc. Symposium on Light Nuclei, Brela, Yugoslavia, 1967; (G. Paic and I. Slauseds.), Gordon-Breach, London (1968).

    Google Scholar 

  98. C. de Vries, R. Hofstadter, A. Johansson and R. Herman, Inelastic electron-deuteron scattering experiments and nucleon structure, Phys. Rev. 134: B848–B859 (1965).

    Google Scholar 

  99. V. N. Fetisov, A. N. Gorbunov and A. T. Varfolomeev, Nuclear photoeffect on three-particle nuclei, Nucl. Phys. 71: 305–342 (1965).

    Google Scholar 

  100. I. M. Barbour and A. C. Phillips, Photodisintegration of three-particle nuclei, Phys. Rev. Letters 19: 1388–1390 (1967).

    ADS  Google Scholar 

  101. J. S. O’Connell and F. Prats, Photodisintegration of the 3N system in a separable potential model, Phys. Letters 26B: 197–200 (1968).

    ADS  Google Scholar 

  102. L. M. Delves, Low-energy photodisintegration of H3 and He3 and neutron-deuteron scattering, Phys. Rev. 118: 1318–1322 (1960);

    ADS  Google Scholar 

  103. A. C. Phillips, Radiative n-d capture and bound and scattering states of three-nucleon systems, Phys. Rev. 170: 952–957 (1968).

    ADS  Google Scholar 

  104. M. Bander, Three-nucleon problem with separable potentials, Phys. Rev. 138: B322–B325 (1965).

    MathSciNet  ADS  Google Scholar 

  105. R. Aaron, R. D. Amado and Y. Y. Yam, Model three-body problem, Phys. Rev. 136: B650–B659 (1964).

    ADS  Google Scholar 

  106. K. Okamoto and B. Davies, Note on the existence of the trineutron, Phys. Letters 24B: 18–21 (1967).

    ADS  Google Scholar 

  107. L. Lovitch and S. Rosati, University of Pisa preprint (1966).

    Google Scholar 

  108. H. Jacob and V. K. Gupta, Existence of trineutron, Phys. Rev. 174 (4): (1968).

    Google Scholar 

  109. Yu. A. Simonov, The three-body problem—a complete set of angular functions; (trans.): Soviet J. Nucl. Phys. 3: 461–466 (1966).

    MathSciNet  Google Scholar 

  110. Yu. A. Simonov and A. M. Badalyan, Binding energy and wave functions for H3 and He3; (trans.): Soviet J. Nucl. Phys. 5: 60–68 (1967).

    Google Scholar 

  111. Yu. A. Simonov and V. V. Pustovalov, A complete set of angular functions for the three-body problem for an arbitrary orbital angular momentum; (trans.): Soviet Physical JETP 24: 230–239 (1967).

    ADS  Google Scholar 

  112. S. K. Monga, Ph. D. Thesis, Delhi University (1967); unpublished.

    Google Scholar 

  113. J. Hetherington and L. Schick, Multiple scattering analysis of low-energy elastic K +-d scattering with separable potentials, Phys. Rev. 137: B935–B948 (1965).

    ADS  Google Scholar 

  114. J. Hetherington and L. Schick, Low-energy K -d scattering with separable potentials, Phys. Rev. 138, B1411–B1420 (1965).

    ADS  Google Scholar 

  115. H. Hebach, P. Henneberg and H. Kummel, Three-body model of He6, Phys. Letters 24B: 134–136 (1967).

    ADS  Google Scholar 

  116. M. S. Shah and A. N. Mitra, Faddeév treatment of Li8 with a separable potential; (submitted to Phys. Rev.).

    Google Scholar 

  117. P. Wackman and N. Austern, A Three body model of Li6 Nucl. Phys. 30: 529–567 (1962).

    Google Scholar 

  118. S. K. Monga and A. N. Mitra, Three-body analysis of A-A force through the binding energies of double hyperfragments, Nuovo Cimento 42A: 1004–1008 (1966).

    ADS  Google Scholar 

  119. D. R. Harrington, Separable potentials and Coulomb interactions, Phys. Rev. 139: B691–B695 (1965).

    MathSciNet  ADS  Google Scholar 

  120. S. K. Monga, Three-body calculations of Be9 with separable potentials, Phys. Rev. 160: 846–852 (1967).

    ADS  Google Scholar 

  121. D. R. Harrington, 3α model for C12, Phys. Rev. 147: 685–688 (1967).

    ADS  Google Scholar 

  122. B. S. Bhakar and R. J. McCarthy, Three-body correlations in reaction matrix calculations, Phys. Rev. 164: 1343–1353 (1967).

    ADS  Google Scholar 

  123. H. A. Bethe, Three-body correlations in nuclear matter, Phys. Rev. 138: B804–B822 (1965).

    ADS  Google Scholar 

  124. M. McMillan, On the Symmetric S- and D- state components of the triton wave function, Nucl. Phys. A105: 649–664 (1967).

    Google Scholar 

  125. G. M. Bailey, G. M. Griffiths and T. W. Donnelly, The photodisintegration of He3 from a direct capture model of the d(p, γ) He3 reaction, Nucl. Phys. A94: 502–512 (1967).

    Google Scholar 

  126. A. N. Mitra, Model for two-pion and three-pion resonances, Phys. Rev. 127: 1342–1349 (1962).

    ADS  Google Scholar 

  127. A. Ahmedzadeh and J. A. Tjon, New reduction of Faddeév equations and application to pion as a 3π bound state, Phys. Rev. 139: B1085–B1092 (1965).

    ADS  Google Scholar 

  128. D. Freedman, C. Lovelace and J. Namyslowski, Practical theory of three-particle states, II. Relativistic, spin zero, Nuovo Cimento 43A: 258–324 (1966).

    ADS  Google Scholar 

  129. V. A. Alessandrini and R. L. Omnes, Three particle scattering—a relativistic theory, Phys. Rev. 139: B167–B178 (1965).

    MathSciNet  ADS  Google Scholar 

  130. R. Blankenbecler and R. Sugar, Linear integral equations for relativistic multichannel scattering, Phys. Rev. 142: 1051–1059 (1966).

    MathSciNet  ADS  Google Scholar 

  131. M. Gell-Mann, A schematic model of baryons and mesons, Phys. Letters 8: 214–215 (1964).

    ADS  Google Scholar 

  132. R. H. Dalitz in “High-Energy Physics” (M. Jacob and C. deWitt, eds.), Gordon-Breach, New York (1965).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mitra, A.N. (1969). The Nuclear Three-Body Problem. In: Baranger, M., Vogt, E. (eds) Advances in Nuclear Physics. Advances in Nuclear Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9018-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9018-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9020-7

  • Online ISBN: 978-1-4757-9018-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics