New NMR Methods for the Study of Hydroxyapatite Surfaces

  • James P. Yesinowski
  • Rex A. Wolfgang
  • Michael J. Mobley


Improved surface-characterization techniques are needed to study the adsorption of molecules and ions from aqueous solutions onto microcrystals of the biological mineral hydroxyapatite, the prime constituent of bone and teeth. The continuing development of techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra from solids indicates that NMR could provide a valuable spectroscopic characterization of hydroxyapatite surfaces. We report here the successful application of new NMR techniques to two areas: (1) the adsorption onto the surface of hydroxyapatite of diphosphonates, used both as inhibitors of biological mineralization and as bone-scanning agents; (2) the reactions of hydroxyapatite with fluoride ion, which are important in the anti-caries benefits provided through fluoridation of dental enamel.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Fluoride Concentration Calcium Fluoride Chemical Shift Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Duncan and C. Dybowski, Chemisorption and surfaces studied by nuclear magnetic resonance spectroscopy, Surface Science Reports, 1: 157 (1981).CrossRefGoogle Scholar
  2. 2.
    J. P. Yesinowski, High-resolution NMR spectroscopy of solids and surface-adsorbed species in colloidal suspension: 31P NMR spectra of hydroxyapatite and diphosphonates, J. Am. Chem. Soc., 103: 6266 (1981).CrossRefGoogle Scholar
  3. 3.
    J. P. Yesinowski, R. A. Wolfgang, and M. J. Mobley, 19F MAS-NMR of fluorapatite, fluoro-hydroxyapatite solid solutions and related compounds, abstract and poster presented at 23rd Experimental NMR Conference, Madison, April, 1982; J. P. Yesinowski, manuscript in preparation.Google Scholar
  4. 4.
    J. P. Yesinowski and M. J. Mobley,19F MAS-NMR of fluoridated hydroxyapatite surfaces, manuscript in preparation.Google Scholar
  5. 5.
    H. G. McCann, The solubility of fluorapatite and its relationship to that of calcium fluoride, Archs. Oral Biol., 13: 987 (1968).CrossRefGoogle Scholar
  6. 6.
    W. P. Rothwell, J. S. Waugh, and J. P. Yesinowski, High-resolution variable-temperature 31P NMR of solid calcium phosphates, J. Am. Chem. Soc., 102: 2637 (1980).CrossRefGoogle Scholar
  7. 7.
    E. R. Andrew, in “Prog. in NMR Spectroscopy”, eds. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 8 Part 1, 1–39 (1971), and references therein.Google Scholar
  8. 8.
    I. J. Lowe, Free induction decays of rotating solids, Phys. Rev. Letters, 2: 285 (1959).CrossRefGoogle Scholar
  9. 9.
    B. C. Gerstein, R. G. Pembleton, R. C. Wilson, and L. M. Ryan, High resolution NMR in randomly oriented solids with homonuclear dipolar broadening: combined multiple pulse NMR and magic angle spinning, J. Chem. Phys., 66: 361 (1977).CrossRefGoogle Scholar
  10. 10.
    M. M. Maricq and J. S. Waugh, NMR in rotating solids, J. Chem. Phys., 70: 3300 (1979).CrossRefGoogle Scholar
  11. 11.
    J. Herzfeld and A. E. Berger, Sideband intensities in NMR spectra of samples spinning at the magic angle, J. Chem. Phys., 73: 6021 (1980).CrossRefGoogle Scholar
  12. 12.
    E. C. Moreno, M. Kresak, and R. T. Zahradnik, Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries, Caries Res., Suppl. 1, 11: 142 (1977).CrossRefGoogle Scholar
  13. 13.
    M. I. Kay, R. A. Young, and A. S, Posner, Crystal structure of hydroxyapatite, Nature, 204: 1050 (1964).CrossRefGoogle Scholar
  14. 14.
    R. A. Young, W. van der Lugt, and J. C. Elliott, Mechanism for fluorine inhibition of diffusion in hydroxyapatite, Nature, 223: 729 (1969).CrossRefGoogle Scholar
  15. 15.
    W. van der Lugt, D. I. M. Knotterus, and W. G. Perdok, Nuclear magnetic resonance investigation of fluoride ions in hydroxyapatite, Acta. Cryst., B27: 1509 (1971).CrossRefGoogle Scholar
  16. 16.
    R. G. Knoubovets, M. L. Afanasjev, and S. P. Habuda, Hydrogen bond and 19F NMR chemical shift anisotropy in apatite, Spectroscopy Letters, 2: 121 (1969).CrossRefGoogle Scholar
  17. 17.
    A. M. Vakhrameev, S.P. Gabuda, and R.G. Knubovets, 1H and 19F NMR in apatites of the type Ca5(PO4)3[F1_x(0x)], J. Struct. Chem. (USSR), 19: 256 (1978).CrossRefGoogle Scholar
  18. 18.
    F. Freund and R. M. Knobel, Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, J. Chem. Soc. Dalton, 1136 (1977).Google Scholar
  19. 19.
    D. P. Burum, D. D. Elleman, and W.-K. Rhim, A multiple pulse zero crossing NMR technique, and its application to 19F chemical shift measurements in solids, J. Chem. Phys., 68: 1164 (1978).CrossRefGoogle Scholar
  20. 20.
    J. L. Carolan, A pulsed NMR investigation of 19F chemical shift anisotropy in single crystals of fluoro- apatite, Chem. Phys. Letters, 12: 389 (1971).CrossRefGoogle Scholar
  21. 21.
    R. W. Vaughan, D. D. Elleman, W.-K. Rhim, and L. M. Stacey, 19F chemical shift tensor in group II difluorides, J. Chem. Phys., 57: 5383 (1972).CrossRefGoogle Scholar
  22. 22.
    W. E. Brown and K. G. Konig, eds., Caries Res., 11, Suppl. 1,1–327 (1977), and references therein.Google Scholar
  23. 23.
    E. D. Eanes and A. H. Reddi, The effect of fluoride on bone mineral apatite, Metab. Bone Dis. & Rel. Res., 2: 3 (1979).CrossRefGoogle Scholar
  24. 24.
    S. H. Y. Wei and W. C. Forbes, X-ray diffraction analyses of the reactions between intact and powdered enamel and several fluoride solutions, J. Dent. Res., 47: 471 (1968).CrossRefGoogle Scholar
  25. 25.
    C. A. Baud and S. Bang, Electron probe and X-ray diffraction microanalyses of human enamel treated in vitro by fluoride solution, Caries Res., 4: 1 (1970).CrossRefGoogle Scholar
  26. 26.
    E. J. Duff, An infrared and X-ray diffractometric study of the incorporation of fluoride into hydroxyapatite under conditions of the cyclic variation of pH, Archs. oral Biol., 11: 763 (1975).CrossRefGoogle Scholar
  27. 27.
    B. Laufer, I. Mayer, I. Gedalia, D. Deutsch, H. W. Kaufman, and M. Tal, Fluoride-uptake and fluoride-residual of fluoride-treated human root dentine in vitro determined by chemical, scanning electron microscopy and X-ray diffraction analyses, Archs. oral Biol., 26: 159 (1981).CrossRefGoogle Scholar
  28. M. D. Francis, J. A. Gray, and W. J. Griebstein, The formation and influence of surface phases on calcium phosphate solids, Adv. in Oral Biology, 3:83 (1968).Google Scholar
  29. 29.
    B. Menzel and C. H. Amberg, An infrared study of the hydroxyl groups in a nonstoichiometric calcium hydroxyapatite with and without fluoridation, J. Colloid Interf. Sci., 38: 256 (1972).CrossRefGoogle Scholar
  30. 30.
    D. M. Hercules and N. L. Craig, Composition of fluoridated dental enamel studied by X-ray photoelectron spectroscopy (ESCA), J. Dent. Res., 55: 829 (1976).CrossRefGoogle Scholar
  31. 31.
    J. Lin, S. Raghavan, and D. W. Fuerstenau, The adsorption of fluoride ions by hydroxyapatite from aqueous solution, Colloids and Surfaces, 3: 357 (1981).CrossRefGoogle Scholar
  32. 32.
    H. Uchtmann and H. Duschner, Electron spectroscopic studies of interactions between superficially-applied fluorides and surface enamel, J. Dent. Res., 61: 423 (1982).CrossRefGoogle Scholar
  33. 33.
    S. Chander, C. C. Chiao, and D. W. Fuerstenau, Transformation of calcium fluoride for caries prevention, J. Dent. Res., 61: 403 (1982).CrossRefGoogle Scholar
  34. 34.
    H. G. McCann, Reactions of fluoride ion with hydroxyapatite, J. Biol. Chem., 201: 247 (1953).Google Scholar
  35. 35.
    M. A. Spinelli, F. Brudevold, and E. Moreno, Mechanism of fluoride uptake by hydroxyapatite, Archs. oral Biol., 16: 187 (1971).CrossRefGoogle Scholar
  36. 36.
    F. F. Feagin, Calcium, phosphate, and fluoride deposition on enamel surfaces, Calc. Tiss. Res., 8: 154 (1971).CrossRefGoogle Scholar
  37. 37.
    V. Caslayska, E. C. Moreno, and F. Brudevold, Determination of the calcium fluoride formed from in vitro exposure of human enamel to fluoride solutions, Archs. oral Biol., 20: 333 (1975).CrossRefGoogle Scholar
  38. 38.
    A. Abragam, “The Principles of Nuclear Magnetism”, Oxford University Press, London, pp. 33–34, 58–63, (1971).Google Scholar
  39. 39.
    W. T. Dixon, Spinning-sideband-free and spinning-sidebandonly NMR spectra in spinning samples, J. Chem. Phys., 77: 1800 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • James P. Yesinowski
    • 1
  • Rex A. Wolfgang
    • 2
  • Michael J. Mobley
    • 3
  1. 1.The Procter & Gamble Co.CincinnatiUSA
  2. 2.Miami Valley LaboratoriesCincinnatiUSA
  3. 3.Sharon Woods Technical CenterCincinnatiUSA

Personalised recommendations