Surface Characterization in Polymer/Metal Adhesion

  • Jennifer A Filbey
  • James P. Wightman


Adhesion involves a detailed understanding of polymer synthesis and characterization, mechanics, and surfaces. This chapter reviews surface analysis and interphase analysis emphasizing polymer/metal systems. The interphase is a thin region between the bulk adherend and the bulk adhesive, as depicted in Figure 1. A surface oxide, either native or one produced by pre-treatment, is present on most metal adherends. A primer is often applied in a production process after pretreatment and before the application of an adhesive. Typical thicknesses for the oxide are 0.003–0.4 µm, for the primer 4 µm (0.16 mil), and for the adhesive 40 µm (1.6 mil). The interphase region is expected to have mechanical properties different from either the adherend or the adhesive. Measurement of these properties is important in understanding adhesion, for example, poorly durable bonds are often a consequence of poor interphase properties.(1,2) Thus, one of the frontier areas in adhesion science today is determining interphase properties.


Auger Electron Spectroscopy Failure Surface Scan Transmission Electron Microscopy Bond Performance Breach Science Publisher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Kinloch, in: Durability of Structural Adhesives (A. J. Kinloch, ed.), pp. 1–39, Applied Science Publishers, London (1983).Google Scholar
  2. 2.
    D. Oldfield and T. E. F. Symes, Surface modification of elastomers for bonding, J. Adhes. 16, 77–96 (1983).CrossRefGoogle Scholar
  3. 3.
    T. Smith, Surface energetics and adhesion, J. Adhes. 11, 243–256 (1980).CrossRefGoogle Scholar
  4. 4.
    W. L. Baun, Applications of surface analysis techniques to studies of adhesion, Appl. Surf. Sci. 4, 291–306 (1980).CrossRefGoogle Scholar
  5. 5.
    D. M. Hercules, Electron spectroscopy, Anal. Chem. 42, No. 1, 20A-40A (1970).Google Scholar
  6. 6.
    S. Hofmann, Surf. Interface Anal. 9, 3 (1986).CrossRefGoogle Scholar
  7. 7.
    O. Johari and A. V. Samudra, in: Characterization of Solid Surfaces (P. F. Kane and G. P. Larrabee, eds.), pp. 107–131, Plenum Press, New York (1974).CrossRefGoogle Scholar
  8. 8.
    E. A. Ledbury, A. G. Miller, P. D. Peters, E. E. Peterson, and B. W. Smith, Microstructural characterization of adhesively bonded joints, in Proc. 12th Natl. SAMPE Techn. Conf. Series, pp. 935–950, SAMPE, Azusa, CA (1980).Google Scholar
  9. 9.
    D.J. Arrowsmith and A. W. Clifford, Morphology of anodic oxide for adhesive bonding of aluminum, Int. J. Adhesion Adhesives 3, 193–196 (1983).CrossRefGoogle Scholar
  10. 10.
    W. Brockmann, O. D. Hennemann, and H. Kollek, Surface properties and adhesion in bonding aluminium alloys by adhesives, Intl. J. Adhesion Adhesives 2, 33–40 (1982).CrossRefGoogle Scholar
  11. 11.
    P. J. Hine, S. El Muddarris, and D. E. Packham, Surface pretreatment of zinc and its adhesion to epoxy resins, J. Adhes. 17, 207–229 (1984).CrossRefGoogle Scholar
  12. 12.
    J. R. G. Evans and D. E. Packham, Adhesion of polyethylene to metals: The role of surface topography, J. Adhes. 10, 177–191 (1979).CrossRefGoogle Scholar
  13. 13.
    R. P. Haak and T. Smith, Surface treatment of AM355 stainless steel for adhesive bonding, Int. J. Adhes. Adhes. 3, 15–23 (1983).CrossRefGoogle Scholar
  14. 14.
    J. D. Venables, D. K. McNamara, J. M. Chen, B. M. Ditchek, T. I. Morgenthaler, T. S. Sun, and R. L. Hopping, Effect of moisture on adhesively bonded aluminum structures, Proc. 12th Natl. SAMPE Techn. Conf. Series, pp. 909–923, SAMPE, Azusa, CA (1980).Google Scholar
  15. 15.
    J. D. Venables, D. K. McNamara, J. M. Chen, T. S. Sun, and R. L. Hopping, Oxide morphologies on aluminum prepared for adhesive bonding, Appl. Surf. Sci. 3, 88–98 (1979).CrossRefGoogle Scholar
  16. 16.
    M. Natan and J. D. Venables, The stability of anodized titanium surfaces in hot water, J. Adhes. 15, 125–136 (1983).CrossRefGoogle Scholar
  17. 17.
    J. A. Bishopp, Novel surface and interfacial analysis techniques as aids to the development of new, high fracture toughness film adhesives, Int. J. Adhesion Adhesives 3, 153–161 (1984).CrossRefGoogle Scholar
  18. 18.
    J. A. Skiles, Ph.D. dissertation, Virginia Polytechnic and State University (April, 1987).Google Scholar
  19. 19.
    J. A. Filbey, J. P. Wightman, and D. J. Progar, Sodium hydroxide anodization of Ti-6A1–4V adherends, J. Adhes. 20, 283–293 (1986).CrossRefGoogle Scholar
  20. 20.
    N. J. Harrick, Internal Reflection Spectroscopy, Wiley, New York (1967).Google Scholar
  21. 21.
    N. J. Harrick, Plenary Lecture: Transmission and reflection spectroscopy, nature of the spectra, in: Characterization of Metal and Polymer Surfaces (L. H. Lee, ed.), Vol. 2, pp. 153–192, Academic Press, New York (1977).Google Scholar
  22. 22.
    P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectroscopy, Wiley, New York (1986).Google Scholar
  23. 23.
    F. J. Boerio, C. A. Gosselin, R. G. Dillingham, and H. W. Liu, Analysis of thin films on metal surfaces, J. Adhes. 13, 159–176 (1981).CrossRefGoogle Scholar
  24. 24.
    K. W. Allen and M. G. Stevens, The structure of films of silane primers on aluminium substrates, J. Adhes. 14, 137–144 (1982).CrossRefGoogle Scholar
  25. 25.
    I. E. Klein, J. Sharon, A. E. Yaniv, H. Dodiuk, and D. Katz, Chemical interactions in the system anodized aluminium-primer-adhesive, Int. J. Adhesion Adhesives 3, 159–162 (1983).CrossRefGoogle Scholar
  26. 26.
    H. Kollek, Some aspects of chemistry in adhesion on anodized aluminium, Int. J. Adhesion Adhesives 5, 75–80 (1985).CrossRefGoogle Scholar
  27. 27.
    J. Comyn, C. C. Horley, D. P. Oxley, R. G. Pritchard, and J. L. Tegg, The application of inelastic electron tunnelling spectroscopy to epoxide adhesives, J. Adhes. 12, 171–188 (1981).CrossRefGoogle Scholar
  28. 28.
    J. Comyn, A. J. Kinloch, C. C. Horley, R. R. Mallik, D. P. Oxley, R. G. Pritchard, S. Reynolds, and C. R. Werrett, The application of inelastic electron tunnelling spectroscopy to adhesive bonding, Int. J. Adhesion Adhesives 5, 59–65 (1985).CrossRefGoogle Scholar
  29. 29.
    T. A. Carlson, Photoelectron and Auger Spectroscopy, Plenum Press, New York (1975).CrossRefGoogle Scholar
  30. 30.
    D. Briggs and M. P. Seah (eds.), Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Wiley, Chichester (1983).Google Scholar
  31. 31.
    N. N.-C. Hsu, J. S. Noland, J. S. Brinen, and S. W. Graham, Some effects of heat processing on adhesively bonded automotive steel, J. Adhes. 19, 241–256 (1986).CrossRefGoogle Scholar
  32. 32.
    J. W. Rusch and R. L. Erickson, Energy dependence of scattered ion yield in ISS, J. Vac. Sci. Technol. 13, 374–377 (1976).CrossRefGoogle Scholar
  33. 33.
    W. L. Baun, The effect of etching on Ti6A14V interfacial chemistry and adhesion to evaporated fold and a commercial adhesive, J. Adhes. 12, 81–98 (1981).CrossRefGoogle Scholar
  34. 34.
    A. Benninghoven, Developments in secondary ion mass spectroscopy and applications to surface studies, Surf. Sci. 53, 596–625 (1975).CrossRefGoogle Scholar
  35. 35.
    W. L. Baun, Applications of ion beam methods to characterization of adhesive bonding materials, in: Interfacial Applications of Surface Analysis (L. A. Casper and C. J. Powell, eds.), pp. 121–141, American Chemical Society, Washington (1982).CrossRefGoogle Scholar
  36. 36.
    A. J. Kinloch, H. E. Bishop, and N. R. Smart, Surface analysis and bonding of aluminium-magnesium alloys, J. Adhes. 14, 105–118 (1982).CrossRefGoogle Scholar
  37. 37.
    D. Briggs, D. M. Brewis, and M. B. Konieczko, X-ray photoelectron spectroscopy studies of polyethylene-aluminum laminates, Eur. Polym. J. 14, 1–4 (1978).CrossRefGoogle Scholar
  38. 38.
    J. P. Wightman, The application of surface analysis to polymer/metal adhesion, SAMPE Q. 13, 1–8 (1981).Google Scholar
  39. 39.
    W. J. van Ooij, A. Kleinhesselink, and S. R. Leyenaar, Industrial applications of XPS: study of polymer-to-metal adhesion failure, Surf. Sci. 89, 165–173 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jennifer A Filbey
    • 1
  • James P. Wightman
    • 2
  1. 1.Finish GroupHoechst CelaneseCharlotteUSA
  2. 2.Center for Adhesive and Sealant Science and Chemistry DepartmentVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations