Extensional Rheometry of Polymer Melts

  • Rakesh K. Gupta


The goal of this chapter is to provide workers in the field of adhesion with an understanding of some pivotal ideas of rheology which go beyond the usual notion of viscosity. To this end, we present an elementary introduction to some more general rheological concepts. We show that in addition to the “ordinary” viscosity η, which is defined with respect to a shear experiment, there is another very useful quantity called the elongational viscosity ηE. This latter quantity is defined by an experiment in which the deformation is in a stretching mode, such as, for example, the elongation of a rod or a fiber. It was pointed out in Chapter 3d) that this mode of deformation is important in many separation processes, particularly with regard to polymers adhering to solids. The molecular mechanisms of deformation of polymer chains in the two modes (shear and elongation) were also discussed briefly.


Extensional Flow Extensional Viscosity Elongational Viscosity Uniaxial Extension Elongational Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Good and R. K. Gupta, Chapter 3, this volume.Google Scholar
  2. 2.
    J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley-Interscience, New York (1980).Google Scholar
  3. 3.
    W. Minoshima and J. L. White, A comparative experimental study of the isothermal shear and uniaxial elongational rheological properties of low density, high density and linear low density polyethylenes, J. Non-Newtonian Fluid Mech. 19, 251–274 (1986).CrossRefGoogle Scholar
  4. 4.
    B. Schlund and L. A. Utracki, Linear low density polyethylenes and their blends: Part 3. Extensional flow of LLDPE’s, Polym. Eng. Sci. 27, 380–386 (1987).CrossRefGoogle Scholar
  5. 5.
    R. I. Tanner, Engineering Rheology, Clarendon Press, Oxford (1985).Google Scholar
  6. 6.
    J. M. Dealy, Extensional flow of non-Newtonian fluids—A review, Polym. Eng. Sci. 11, 433–445 (1971).CrossRefGoogle Scholar
  7. 7.
    J. M. Dealy, Rheometers for Molten Plastics, Van Nostrand Reinhold Co., New York (1982).CrossRefGoogle Scholar
  8. 8.
    I. H. Shames, Mechanics of Fluids, 2nd ed., McGraw-Hill, New York (1982).Google Scholar
  9. 9.
    C. J. S. Pétrie, Elongational Flows, Pitman, London (1979).Google Scholar
  10. 10.
    S. H. Crandall, N. C. Dahl, and T. J. Lardner, An Introduction to the Mechanics of Solids, 2nd ed., McGraw-Hill, New York (1972).Google Scholar
  11. 11.
    F. T. Trouton, On the coefficient of viscous traction and its relation to that of viscosity, Proc. R. Soc. London, Ser. A. 77, 426–440 (1906).Google Scholar
  12. 12.
    K. Walters, Rheometry, Chapman and Hall, London (1975).Google Scholar
  13. 13.
    J. M. Dealy, Official nomenclature for material functions describing the response of a viscoelastic fluid to various shearing and extensional deformations, J. Rheol. 28, 181–195 (1984).CrossRefGoogle Scholar
  14. 14.
    J. M. Dealy, Extensional rheometers for molten polymers: a review, J. Non-Newtonian Fluid Mech. 4, 9–21 (1978).CrossRefGoogle Scholar
  15. 15.
    R. L. Ballman, Extensional flow of polystyrene melt, Rheol. Acta 4, 137–140 (1965).CrossRefGoogle Scholar
  16. 16.
    J. F. Stevenson, Extensional flow of polymer melts, AIChE J 18, 540–547 (1972).CrossRefGoogle Scholar
  17. 17.
    G. V. Vinogradov, B. V. Radushkevich, and V. D. Fikhman, Extension of elastic liquids: polyisobutylene, J. Polym. Sci. A2 8, 1–17 (1970).CrossRefGoogle Scholar
  18. 18.
    J. Rhi-Sausi and J. M. Dealy, An extensiometer for molten plastics, Polym. Eng. Sci. 16, 799–802 (1976).CrossRefGoogle Scholar
  19. 19.
    P. K. Agrawal, W. K. Lee, J. M. Lorntson, C. I. Richardson, K. F. Wissbrun, and A. B. Metzner, Rheological behavior of molten polymers in shearing and in extensional flows, Trans. Soc. Rheol. 21, 355–379 (1977).CrossRefGoogle Scholar
  20. 20.
    L. A. Utracki, Flow properties of polyethylenes and their blends, Proc. IXth Int. Congress on Rheology, Acapulco, Mexico, 3, pp. 567–572 (1984).Google Scholar
  21. 21.
    F. N. Cogswell, The rheology of polymer melts under tension, Plast. Polym. 36, 109–111 (1968).Google Scholar
  22. 22.
    J. Dealy, R. Färber, J. Rhi-Sausi, and L. Utracki, Experience with a constant stress melt extensiometer, Trans. Soc. Rheol. 20, 455–464 (1976).CrossRefGoogle Scholar
  23. 23.
    G. V. Vinogradov, V. D. Fikhman, and B. V. Radushkevich, Uniaxial extension of polystyrene at true constant stress, Rheol. Acta 11, 286–291 (1972).CrossRefGoogle Scholar
  24. 24.
    H. Munstedt, Viscoelasticity of polystyrene melts in tensile creep experiments, Rheol. Acta 14, 1077–1088 (1975).CrossRefGoogle Scholar
  25. 25.
    H. Munstedt, New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample, J. Rheol. 23, 421–436 (1979).CrossRefGoogle Scholar
  26. 26.
    V.S. Au-Yeung and C. W. Macosko, Extensional rheometry of several blow molding polyethylenes, Proc. VIIIth Int. Congress on Rheology, Naples, Italy, 3, pp. 717–722 (1980).Google Scholar
  27. 27.
    V.S. Au-Yeung and C. W. Macosko, Small-scale testing for better HDPE bottle parisons, Mod. Plast. 58, 84–86 (April 1981).Google Scholar
  28. 28.
    I. K. Park and D. W. Riley, Elongational flow behavior of PVC melt, J. Macromol. Sci., Phys. B20, 277–286 (1981).CrossRefGoogle Scholar
  29. 29.
    H. M. Laun and H. Schuch, Transient elongational viscosities and drawability of polymer melts, J. Rheol. 33, 119–175 (1989).CrossRefGoogle Scholar
  30. 30.
    J. Meissner, A rheometer for investigation of deformation—mechanical properties of plastic melts under defined extensional straining, Rheol. Acta 8, 78–88 (1969).CrossRefGoogle Scholar
  31. 31.
    J. Meissner, T. Raible, and S. E. Stephenson, Rotary clamp in uniaxial and biaxial extensional rheometry of polymer melts, J. Rheol. 25, 1–28 (1981).CrossRefGoogle Scholar
  32. 32.
    J. Meissner, Development of a universal extensional rheometer for the uniaxial extension of polymer melts, Trans. Soc. Rheol. 16, 405–420 (1972).CrossRefGoogle Scholar
  33. 33.
    J. Meissner, Rheometry of polymer melts, Ann. Rev. Fluid Mech. 17, 45–64 (1985).CrossRefGoogle Scholar
  34. 34.
    J. Meissner, Experimental aspects in polymer melt elongational rheometry, Chem. Eng. Commun. 33, 159–180 (1985).CrossRefGoogle Scholar
  35. 35.
    J. Meissner, Polymer melt elongation—methods, results, and recent developments, Polym. Eng. Sci. 27, 537–546 (1987).CrossRefGoogle Scholar
  36. 36.
    O. Ishizuka and K. Koyama, Elongational viscosity at a constant elongational strain rate of polypropylene melt, Polymer 21, 164–170 (1980).CrossRefGoogle Scholar
  37. 37.
    Y. Ide and J. L. White, Experimental study of elongational flow and failure of polymer melts, J. Appl. Polym. Sci. 22, 1061–1079 (1978).CrossRefGoogle Scholar
  38. 38.
    C. W. Macosko and J. M. Lorntson, The rheology of two blow molding polyethylenes, SPE Tech. Papers 19, 461–467 (1973).Google Scholar
  39. 39.
    A. E. Everage and R. L. Ballman, Extensional viscosity of amorphous polystyrene, J. Appl. Polym. Sci. 20, 1137–1141 (1976).CrossRefGoogle Scholar
  40. 40.
    R. W. Connelly, L. G. Garfield, and G. H. Pearson, Local stretch history of a fixed-end-constant-length-polymer-melt stretching experiment, J. Rheol. 23, 651–662 (1979).CrossRefGoogle Scholar
  41. 41.
    T. Matsumoto and D. C. Bogue, Non-isothermal rheological response during elongational flow, Trans. Soc. Rheol. 21, 453–468 (1977).CrossRefGoogle Scholar
  42. 42.
    J. Meissner, Basic parameters, melt rheology, processing and end-use properties of three similar LDPE samples, Pure Appl. Chem. 42, 553–612 (1975).CrossRefGoogle Scholar
  43. 43.
    H. M. Laun and H. Munstedt, Comparison of the elongational behavior of a polyethylene melt at constant stress and constant stretch rate, Rheol. Acta 15, 517–524 (1976).CrossRefGoogle Scholar
  44. 44.
    H. M. Laun and H. Munstedt, Elongational behavior of a LDPE melt. I. Strain rate and stress dependence of viscosity and recoverable strain in the steady state. Comparison with shear data. Influence of interfacial tension, Rheol. Acta 17, 415–425 (1978).CrossRefGoogle Scholar
  45. 45.
    H. Munstedt and H. M. Laun, Elongational behavior of a LDPE melt. II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties, Rheol. Acta 18, 492–504 (1979).CrossRefGoogle Scholar
  46. 46.
    H. Munstedt, Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution, J. Rheol. 24, 847–867 (1980).CrossRefGoogle Scholar
  47. 47.
    H. Munstedt and H. M. Laun, Elongational properties and molecular structure of polyethylene melts, Rheol. Acta 20, 211–221 (1981).CrossRefGoogle Scholar
  48. 48.
    T. Raible, A. Demarmels, and J. Meissner, Stress and recovery maxima in LDPE melt elongation, Polym. Bull. 1, 397–402 (1979).CrossRefGoogle Scholar
  49. 49.
    T. Raible and J. Meissner, Uniaxial extensional experiments with large strains performed with low density polyethylene, Proc. VIIIth Int. Congress Rheol., Naples, Italy, 2, pp. 425–430 (1980).Google Scholar
  50. 50.
    V. S. Au-Yeung, C. W. Macosko, and V. R. Raju, Extensional flow of linear and star-branched hydrogenat-ed polybutadiene with narrow molecular weight distribution, J. Rheol. 25, 445–452 (1981).CrossRefGoogle Scholar
  51. 51.
    R. K. Gupta and T. Sridhar, in: Rheological Measurement (D. W. Clegg and A. A. Collyer, eds.), Chapter 8, pp. 211–245, Elsevier Applied Science Publishers, London (1988).Google Scholar
  52. 52.
    J. L. White, Experimental study of elongational flow of polymers, J. Appl. Polym. Sci., Appl. Polym. Symp. 33, 31–47 (1978).Google Scholar
  53. 53.
    H. Munstedt, The elongational behavior of various polymer melts, Proc. VIIIth Int. Congress Rheol., Naples, Italy, 2, pp. 413–418 (1980).Google Scholar
  54. 54.
    Y. Suetsugu and J. L. White, The influence of particle size and surface coating of calcium carbonate on the rheological properties of its suspensions in molten polystyrene, J. Appl. Polym. Sci. 28, 1481–1501 (1983).CrossRefGoogle Scholar
  55. 55.
    L. A. Utracki and J. Lara, Extensional flow of mica-filled polyethylene, Polym. Compos. 5, 44–50 (1984).CrossRefGoogle Scholar
  56. 56.
    M. R. Kamal, A. T. Mutel, and L. A. Utracki, Elongational behavior of short glass fiber reinforced polypropylene melts, Polym. Compos. 5, 289–298 (1984).CrossRefGoogle Scholar
  57. 57.
    M. M. Dumoulin, L. A. Utracki, and J. Lara, Rheological and mechanical behavior of the UHMWPE/ MDPE mixtures, Polym. Eng. Sci. 24, 117–125 (1984).CrossRefGoogle Scholar
  58. 58.
    M. M. Dumoulin, C. Farha, and L. A. Utracki, Rheological and mechanical properties of ternary blends of linear-low-density polyethylene/polypropylene/ethylene-propylene block polymers, Polym. Eng. Sci. 24, 1319–1326 (1984).CrossRefGoogle Scholar
  59. 59.
    A. Ziabicki, Fundamentals of Fibre Formation, Wiley, London (1976).Google Scholar
  60. 60.
    Z. K. Walczak, Formation of Synthetic Fibers, Gordon and Breach, New York (1977).Google Scholar
  61. 61.
    M. M. Denn, Continuous drawing of liquids to form fibers, Ann. Rev. Fluid Mech. 12, 365–387 (1980).CrossRefGoogle Scholar
  62. 62.
    J. L. White, Dynamics, heat transfer and rheological aspects of melt spinning: a critical review, Polym. Eng. Rev. 1, 297–362 (1981).Google Scholar
  63. 63.
    A. Ziabicki and H. Kawai (Eds.), High Speed Fiber Spinning, Wiley, New York (1985).Google Scholar
  64. 64.
    M. A. Matovich and J. R. A. Pearson, Spinning a molten threadline—steady state isothermal viscous flows, Ind. Eng. Chem. Fundam. 8, 512–520 (1969).CrossRefGoogle Scholar
  65. 65.
    G. Attalla, G. Corrieri, and D. Romanini, Proc. VIIIth Int. Congress Rheol., Naples, Italy, 2, pp. 407–412 (1980).Google Scholar
  66. 66.
    M. M. Denn, in: Computational Analysis of Polymer Processing (J. R. A. Pearson and S. M. Richardson, eds.), pp. 179–216, Applied Science Publishers, London (1983).CrossRefGoogle Scholar
  67. 67.
    C.D. Han, Rheology in Polymer Processing, Academic Press, New York (1976).Google Scholar
  68. 68.
    C.D. Han, Multiphase Flow in Polymer Processing, Academic Press, New York (1981).Google Scholar
  69. 69.
    F. N. Cogswell, Converging flow of polymer melts in extrusion dies, Polym. Eng. Sci. 12, 64–73 (1972).CrossRefGoogle Scholar
  70. 70.
    F. N. Cogswell, Measuring the extensional rheology of polymer melts, Trans. Soc. Rheol. 16, 383–403 (1972).CrossRefGoogle Scholar
  71. 71.
    F. N. Cogswell, Converging flow and stretching flow: a compilation, J. Non-Newtonian Fluid Mech. 4, 23–38 (1978).CrossRefGoogle Scholar
  72. 72.
    A. E. Everage and R. L. Ballman, The extensional flow capillary as a new method for extensional viscosity measurement, Nature 273, 213–215 (1978).CrossRefGoogle Scholar
  73. 73.
    T. Takaki and D. C. Bogue, The extensional and failure properties of polymer melts, J. Appl. Polym. Sci. 19, 419–433 (1975).CrossRefGoogle Scholar
  74. 74.
    T. Raible, S. E. Stephenson, J. Meissner, and M. H. Wagner, Constant force elongational flow of a low density polyethylene melt—experiment and theory, J. Non-Newtonian Fluid Mech. 11, 239–256 (1982).CrossRefGoogle Scholar
  75. 75.
    S.A. Khan and R. G. Larson, Comparison of simple constitutive equations for polymer melts in shear and biaxial and uniaxial extensions, J. Rheol. 31, 207–234 (1987).CrossRefGoogle Scholar
  76. 76.
    R. K. Upadhyay and A. I. Isayev, Elongational flow behavior of polymeric fluids according to the Leonov model, Rheol. Acta 22, 557–568 (1983).CrossRefGoogle Scholar
  77. 77.
    S. Middleman, The Flow of High Polymers, Wiley-Interscience, New York (1968).Google Scholar
  78. 78.
    R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, 2nd ed., volume 1, Wiley, New York (1987).Google Scholar
  79. 79.
    S. Middleman, Fundamentals of Polymer Processing, McGraw-Hill, New York (1977).Google Scholar
  80. 80.
    A. S. Lodge, Constitutive equations from molecular theory for polymer solutions, Rheol. Acta 7, 379–392 (1968).CrossRefGoogle Scholar
  81. 81.
    M. J. Crochet, A. R. Davies and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, Amsterdam (1984).Google Scholar
  82. 82.
    M. H. Wagner, A constitutive analysis of uniaxial elongational flow data of a low density polyethylene melt, J. Non-Newtonian Fluid Mech. 4, 39–55 (1978).CrossRefGoogle Scholar
  83. 83.
    J. L. White and A.B. Metzner, Development of constitutive equations for polymer melts and solutions, J. Appl. Polym. Sci. 7, 1867–1889 (1963).CrossRefGoogle Scholar
  84. 84.
    M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows for non-affine deformation, J. Non-Newtonian Fluid Mech. 2, 255–270 (1977).CrossRefGoogle Scholar
  85. 85.
    N. Phan-Thien and R. I. Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2, 353–365 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Rakesh K. Gupta
    • 1
  1. 1.Department of Chemical EngineeringState University of New York at BuffaloBuffaloUSA

Personalised recommendations