Morphogenesis of the Mammalian Egg Cortex

  • Frank J. Longo


The final maturation processes of the mammalian oocyte leading to ovulation include events of germinal vesicle breakdown, i.e., the disappearance of nucleoli, nuclear envelope breakdown, and chromosome condensation. The chromosomes are assembled on the first meiotic spindle, which then migrates to the oocyte cortex; this is followed by the formation of the first polar body and development of the second meiotic spindle, at which time meiosis is arrested until the egg is fertilized. Recent studies have demonstrated that these nuclear changes are accompanied by, and in some instances causal to, specific rearrangements of organelles and cytoskeletal elements comprising the cell cortex (Longo and Chen, 1984, 1985; Maro et al., 1984, 1986c; Van Blerkom and Bell, 1986; Longo, 1987).


Oocyte Maturation Polar Body Germinal Vesicle Mouse Oocyte Cortical Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertini, D., 1984, Novel morphological approaches for the study of oocyte-maturation, Biol. Reprod. 30: 13–28.PubMedCrossRefGoogle Scholar
  2. Albertini, D. E, Overstrom, E. W, and Ebert, K. M., 1987, Changes in the organization of the actin cytoskeleton during perimplantation development of the pig embryo, Biol. Reprod. 37: 441–451.PubMedCrossRefGoogle Scholar
  3. Allworth, A., and Ziomek, C. A., 1988, Filipin-labeled complexes are polarized in their distribution in the cytoplasm of meiotically mature mouse eggs, Gamete Res. 20: 574–489.CrossRefGoogle Scholar
  4. Baca, M., and Zamboni, L., 1967, The fine structure of human follicular oocytes, J. Ultrastruct. Res. 19: 354–381.PubMedCrossRefGoogle Scholar
  5. Battaglia, D. E., and Gaddum-Rosse, P, 1986, The distribution of polymerized actin in the rat egg and its sensitivity to cytochalasin B during fertilization, J. Exp. Zool. 237: 97–105.PubMedCrossRefGoogle Scholar
  6. Battaglia, D. E., and Gaddum-Rosse, P., 1987, Influence of the calcium ionophore A23187 on rat egg behavior and cortical F-actin, Gamete Res. 18: 141–152.PubMedCrossRefGoogle Scholar
  7. Bulinski, J. C., Richards, J. E., and Piperno, G., 1988, Post-translational modifications of a-tubulin: Detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells, J. Cell Biol. 106: 1213–1220.PubMedCrossRefGoogle Scholar
  8. Calarco, P. G., and Epstein, C. J., 1973, Cell surface changes during preimplantation development in the mouse, Dev. Biol. 32: 208–213.PubMedCrossRefGoogle Scholar
  9. Calarco-Gillam, P. G., Siebert, M. C., Hubble, R., Mitchison, T., and Kirschner, M., 1983, Centrosome development in early mouse embryos as defined by an auto-antibody against pericentriolar material, Cell 35: 621–629.PubMedCrossRefGoogle Scholar
  10. Capco, D. G., and McGaughey, R. W., 1986, Cytoskeletal reorganization during early mammalian development: Analysis using embedment-free sections, Dev. Biol. 115: 446–458.PubMedCrossRefGoogle Scholar
  11. Cherr, G. N., Drobnis, E. Z., and Katz, D. F, 1988, Localization of cortical granule constituents before and after exocytosis in the hamster egg, J. Exp. Zool. 246: 81–93.PubMedCrossRefGoogle Scholar
  12. Condeelis, J., 1979, Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80: 751–758.PubMedCrossRefGoogle Scholar
  13. Cooper, C. W, and Bedford, J. M., 1971, Charge density change in the vitelline surface following fertilization of the rabbit egg, J. Reprod. Fertil. 25: 431–436.PubMedCrossRefGoogle Scholar
  14. Cran, D., and Cheng, W, 1985, Changes in cortical granules during porcine oocyte maturation, Gamete Res. 11: 311–319.CrossRefGoogle Scholar
  15. Damjanov, I., Damjanov, A., Lehto, V.-P., and Vertanen, I., 1986, Spectrin in mouse gametogenesis and embryogenesis, Dev. Biol. 114: 132–140.PubMedCrossRefGoogle Scholar
  16. Davidson, E. H., 1980, Gene Activity in Early Development, Academic Press, New York.Google Scholar
  17. Ducibella, T., Ukena, T., Karnovsky, M., and Anderson, E., 1977, Changes in cell surface and cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo, J. Cell Biol. 74:153.-167.Google Scholar
  18. Ducibella, T., Anderson, E., Albertini, D. F, Aalberg, J., and Rangarajan, S., 1988a, Quantitative studies of changes in cortical granule number and distribution in the mouse oocyte during meiotic maturation, Dev. Biol. 130: 184–197.PubMedCrossRefGoogle Scholar
  19. Ducibella, T., Rangarajan, S., and Anderson, A., 1988b, The development of mouse oocyte cortical reaction competence is accompanied by major changes in cortical vesicles and not cortical granule depth, Dev. Biol. 130: 789–792.PubMedCrossRefGoogle Scholar
  20. Eager, D. D., Johnson, M. H., and Thurley, K. W, 1976, Ultrastructural studies on the surface membrane of the mouse egg, J. Cell Sci. 22: 345–353.PubMedGoogle Scholar
  21. Ebensperger, C., and Barros, C., 1984, Changes at the hamster oocyte surface from the germinal vesicle stage to ovulation, Gamete Res. 9: 387–397.CrossRefGoogle Scholar
  22. Fleming, T. P, and Pickering, S. J., 1985, Maturation and polarization of the endocytotic system in outside blastomeres during mouse preimplantation development, J. Embryol. Exp. Morphol. 89: 175–208.PubMedGoogle Scholar
  23. Franke, W. W, Schmid, E., Schiller, D. L., Winter, W, Jarasch, E. D., Moll, R., Denk, H., Jackson, B. W., and Illmensee, K., 1982, Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells, Cold Spring Harbor Symp. Quant. Biol. 46: 431–453.PubMedCrossRefGoogle Scholar
  24. Gardiner, D. M., and Grey, R. D., 1983, Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation, J. Cell Biol. 96: 1159–1163.PubMedCrossRefGoogle Scholar
  25. Geiger, B., 1983, Membrane—cytoskeleton interaction, Biochim. Biophys. Acta 737: 305–341.PubMedCrossRefGoogle Scholar
  26. Gould, K. G., 1973, Preparation of mammalian gametes and reproductive tract tissues for scanning electron microscopy, Fertil. Steril. 24: 448–456.PubMedGoogle Scholar
  27. Gulyas, B. J., 1976, Ultrastructural observations on rabbit, hamster and mouse eggs following electrical stimulation in vitro, Am. J. Anat. 147: 203–217.PubMedCrossRefGoogle Scholar
  28. Gulyas, B. J., 1980, Cortical granules of mammalian eggs, Int. Rev. Cytol. 63: 357–392.PubMedCrossRefGoogle Scholar
  29. Guraya, S. S., 1982, Recent progress in the structure, origin, composition and function of cortical granules in animal eggs, Int. Rev. Cytol. 78: 257–359.PubMedCrossRefGoogle Scholar
  30. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Sci. 8: 245–250.CrossRefGoogle Scholar
  31. Imhof, B. A., Martin, U., Boller, K., Frank, H., and Birchmeier, W, 1983, Association between coated vesicles and microtubules, Exp. Cell Res. 145: 199–207.PubMedCrossRefGoogle Scholar
  32. Jeffrey, W. R., Tomlinson, D. R., and Brodeur, R. D., 1983, Localization of actin messenger RNA during early ascidian development, Dey. Biol. 99: 408–417.CrossRefGoogle Scholar
  33. Johnson, M. H., and Pickering, S. J., 1987, The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte, Development 100: 313–324.PubMedGoogle Scholar
  34. Johnson, M. H., Eager, D., and Muggleton-Harris, A., 1975, Mosiacism in organization of concanavalin A receptor on surface membrane of mouse eggs, Nature 257: 321–322.PubMedCrossRefGoogle Scholar
  35. Karasiewicz, J., and Soltynska, M. S., 1985, Ultrastructural evidence for the presence of actin filaments in mouse eggs at fertilization, Wilhelm Rouxs Arch. Dey. Biol. 194: 369–372.CrossRefGoogle Scholar
  36. Karsenti, E., Newport, J., Hubble, R., and Kirschner, M., 1984, Interconversion of metaphase and interphase microtubule arrays as studied by the injection of centrosomes and nuclei into Xenopus eggs, J. Cell Biol. 98: 1730–1745.PubMedCrossRefGoogle Scholar
  37. Kelly, W. G., Passaniti, A., Woods, J. W, Baiss, J. L., and Roth, T. F., 1983, lhbulin as a molecular component of coated vesicles, J. Cell Biol. 97: 1191–1199.Google Scholar
  38. Koehler, J. K., Clark, J. M., and Smith, D., 1985, Freeze-fracture observations on mammalian oocytes, Am. J. Anat. 174: 317–329.PubMedCrossRefGoogle Scholar
  39. Le Guen, P., Crozet, N., Huneau, D., and Gall, L., 1989, Distribution and role of microfilaments during events of sheep fertilization, Gamete Res. 22: 411–425.PubMedCrossRefGoogle Scholar
  40. Lehtonen, E., 1985, A monoclonal antibody against mouse oocyte cytoskeleton recognizing cytokeratin-type filaments, J. Embryol. Exp. Morphol. 90: 197–209.PubMedGoogle Scholar
  41. Lehtonen, E., 1987, Cytokeratins in oocytes and preimplantation embryos of the mouse, in: Current Topics in Developmental Biology, Vol. 22. The Molecular and Developmental Biology of Keratins ( A. A. Moscona and A. Monroy, eds.), Academic Press, New York, pp. 153–173.CrossRefGoogle Scholar
  42. Lehtonen, E., and Vertanen, I., 1985, Evidence for the presence of cytokeratin-like protein in preimplantation mouse embryos, Ann. N.Y. Acad. Sci. 455: 744–747.CrossRefGoogle Scholar
  43. Lehtonen, E., Lehto, V.-P, Vartio, T., Badley, R. A., and Virtanen, I., 1983, Expression of cytokertin polypeptides in mouse oocytes and preimplantation embryos, Dev. Biol. 100: 158–165.PubMedCrossRefGoogle Scholar
  44. L’Hernault, S. W., and Rosenbaum, J. L., 1985, Reversal of the post-translational modification on Chlamydomonas flagellar a-tubulin occurs during flagellar resorption, J. Cell Biol. 100: 457–462.PubMedCrossRefGoogle Scholar
  45. Liebfried-Rutledge, M. L., Florman, H. M., and First, N. L., 1989, The molecular biology of mammalian oocyte maturation, in: The Molecular Biology of Fertilization ( H. Schatten and G. Schatten, eds.), Academic Press, New York, pp. 259–301.Google Scholar
  46. Longo, F. J., 1.972, The effects of cyotchalasin-B on the events of fertilization in the surf clam Spisula solidissima, I. Polar body formation, J. Exp. Zool. 182: 321–344.Google Scholar
  47. Longo, F J., 1974, An ultrastructural analysis of spontaneous activation of hamster eggs aged in vivo, Anat. Rec. 179: 27–56.PubMedCrossRefGoogle Scholar
  48. Longo, F J., 1981, Morphological features of the surface of the sea urchin (Arbacia punctulata) egg: Oolemmacortical granule association, Dev. Biol. 83: 173–181.CrossRefGoogle Scholar
  49. Longo, F J., 1985, Fine structure of the mammalian egg cortex. Am. J. Anat. 174: 303–315.PubMedCrossRefGoogle Scholar
  50. Longo, F. J., 1987, Actin-plasma membrane associations in mouse eggs and oocytes, J. Exp. Zool. 243: 299–309.PubMedCrossRefGoogle Scholar
  51. Longo, F. J., and Chen, D.Y., 1984, Development of surface polarity in mouse eggs, Scanning Electron Microsc. 2: 703–716.Google Scholar
  52. Longo, F. J., and Chen, D. Y., 1985, Development of cortical polarity in mouse eggs: Involvement in the meiotic apparatus, Dev. Biol. 107: 382–294.PubMedCrossRefGoogle Scholar
  53. Loor, F, 1981, Cell surface-cell cortex transmembranous interactions with special reference to lymphocyte functions, in: Cytoskeletal Elements and Plasma Membrane Organization. ( G. Poste and G. L. Nicolson, eds.), Elsevier/North Holland, Amsterdam, pp. 255–335.Google Scholar
  54. Lopata, A., Sathananthan, A. H., McBain, J. C., Johnston, W. I. H., and Speirs, A. L., 1980, The ultrastructure of preovulatory human egg fertilized in vitro, Fertil. Steril. 33: 12–20.PubMedGoogle Scholar
  55. Louvard, D., and Reggio, H., 1981, Role des microtubules dans l’organization due complexe de Golgi, Ann. Endocrinol. 42: 349–362.Google Scholar
  56. Luttmer, S., and Longo, F. J., 1985, Ultrastructural and morphometric observations of cortical endoplasmic reticulum in Arbacia, Spisula and mouse eggs, Dev. Growth Differ. 27: 349–359.CrossRefGoogle Scholar
  57. Maro, B., Johnson, M. H., Pickering, S. J., and Flach, G., 1984, Changes in actin distribution during fertilization of mouse egg, J. Embryol. Exp. Morphol. 81: 211–237.PubMedGoogle Scholar
  58. Maro, B., Howlett, S. K., and Webb, M., I985a, Non-specific microtubule organizing centers in metaphase II-arrested mouse oocytes, J. Cell Biol. 101: 1665–1672.Google Scholar
  59. Maro, B., Johnson, M. H., Pickering, S. J., and Louvard, D., 1985b, Changes in the distribution of membranous organelles during mouse early development, J. Embryol. Exp. Morphol. 90: 287–309.PubMedGoogle Scholar
  60. Maro, B., Howlett, S. K., and Johnson, M. H., 1986a, Cellular and molecular interpretation of mouse early development: The first cell cycle, in: Gametogenesis and the Early Embryo ( J. G. Gall, ed.), Alan R. Liss, New York, pp. 389–407.Google Scholar
  61. Maro, B., Howlett, S. K., and Houliston, E., 1986b, Cytoskeletal dynamics in the mouse egg. J. Cell Sci. [Suppl.] 5: 343–359.Google Scholar
  62. Maro, B., Johnson, M. H., Webb, M., and Flach, G., 1986c, Mechanism of polar body formation in the mouse oocyte: An interaction between the chromosomes, the cytoskeleton and the plasma membrane, J. Embryol. Exp. Morphol. 92: 11–32.PubMedGoogle Scholar
  63. Maro, B., Houliston, E. H., and Paintrand, M., 1988, Purification of meiotic spindles and cytoplasmic asters from mouse oocytes, Dev. Biol. 129: 275–282.PubMedCrossRefGoogle Scholar
  64. Miyazaki, S,, 1988, Inositol 1,4,5 triphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs, J. Cell Biol. 106: 345–353.PubMedCrossRefGoogle Scholar
  65. Miyazaki, S., Hashimoto, N., Yoshimoto, Y., Kishimoto, T., Igusa, Y., and Hiramoto, Y., 1986, Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs, Dev. Biol. 118: 259–267.PubMedCrossRefGoogle Scholar
  66. Moon, R. T., Nicosia, R. F., Olsen, C., Hille, M. B., and Jeffrey, W. R., 1983, The cytoskeletal framework of sea urchin eggs and embryos: Developmental changes in the association of messenger RNA, Dev. Biol. 95: 447–458.PubMedCrossRefGoogle Scholar
  67. Nicosia, S. V., Wolf, D. P, and Inoue, M., 1977, Cortical granule distribution and cell surface characteristics in mouse eggs, Dev. Biol. 57: 56–74.PubMedCrossRefGoogle Scholar
  68. Nicosia, S. V, Wolf, D. P, and Mastroianni, L., 1978, Surface topography of mouse eggs before and after insemination, Gamete Res. 1: 145–155.CrossRefGoogle Scholar
  69. Norberg, H. S., 1973, Ultrastructure of pig tubal ova, Z. Zellforsch 141: 103–122.PubMedCrossRefGoogle Scholar
  70. Odor, D. L., and Renninger, D. F., 1960, Polar body formation in the rat oocyte as observed with the electron microscope, Anat. Rec. 147: 13–23.CrossRefGoogle Scholar
  71. Okada, A., Yangimachi, R., and Yangimachi, H., 1986, Development of a cortical granule-free area of cortex and the perivitelline space in the hamster oocyte during maturation and following ovulation, J. Submicrosc. Cytol. 18: 233–247.PubMedGoogle Scholar
  72. Osborn, M., and Weber, K., 1983, Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology, Lab. Invest. 48: 372–394.PubMedGoogle Scholar
  73. Peaucellier, G., Guerrier, P, and Bergerard, J., 1974, Effects of cytochalasin B on meiosis and development of fertilized and activated eggs of Sabellaria alveolata (Polychaete Annelid), J. Embryol. Exp. Morphol. 31: 61–74.PubMedGoogle Scholar
  74. Penman, S., Capco, D. G., Fey, E. G., Chatterjee, P., Reiter, T., Ermish, S., and Wang, K., 1983, The three-dimensional structural networks of cytoplasm and nucleus: Function in cells and tissue, in: Modern Cell Biology, Vol. 2 ( J. R. MacIntosh, ed.). Alan R. Liss, New York, pp. 385–415.Google Scholar
  75. Peters, R., 1981, Translation diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis, Cell Biol. Int. Rep. 5: 733–760.PubMedCrossRefGoogle Scholar
  76. Pfeffer, S. R., Drubin, D. G., and Kelly, R. B., 1983, Identification of three coated vesicle components as alpha and beta tubulin linked to a phosphorylated 50,000 dalton polypeptide, J. Cell Biol. 97: 40–47.PubMedCrossRefGoogle Scholar
  77. Phillips, D. M., and Shalgi, R., 1980, Surface architecture of the mouse and hamster zona pellucida and oocyte, J. Ultrastruct. Res. 72: 1–12.PubMedCrossRefGoogle Scholar
  78. Pickering, S. J., and Johnson, M. H., 1987, The influence of cooling on the organization of the meiotic spindle of mouse oocytes, Hum. Reprod. 2: 207–216.PubMedGoogle Scholar
  79. Pickering, S. J., Johnson, M. H., Broude, P. R., and Houliston, E., 1988, Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes, Hum. Reprod. 3: 978–989.PubMedGoogle Scholar
  80. Piperno, G., and Fuller, M. T., 1985, Monoclonal antibodies specific for an acetylated form of a-tubulin recognize the antigen in cilia and flagella from a variety of organisms, J. Cell Biol. 101: 1665–1672.CrossRefGoogle Scholar
  81. Piperno, G., LeDizet, M., and Chang, X., 1987, Microtubules containing acetylated a-tubulin in mammalian cells in culture, J. Cell Biol. 104: 289–302.PubMedCrossRefGoogle Scholar
  82. Pratt, H. P. M., 1985, Membrane organization in the preimplantation mouse embryo, J. Embryol. Exp. Morphol. 90: 101–121.PubMedGoogle Scholar
  83. Reima, I., and Lehtonen, E., 1985, Localization of monerythroid spectrin and actin in mouse oocytes and preimplantation embryos, Differentiation 30: 68–75.PubMedCrossRefGoogle Scholar
  84. Saffman, P G., and Delbruck, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. U.S.A. 72: 3111–3113.PubMedCrossRefGoogle Scholar
  85. Sathananthan, A. H., and Lopata, L., 1980, Ultrastructure of human eggs: Aspirated preovulatory mature ova prior to fertilization, Micron 11: 469–470.Google Scholar
  86. Sathananthan, A. H., and Trounson, A. O., 1982a, Ultrastructural observations on cortical granules in human follicular oocytes cultured in vitro, Gamete Res. 5: 191–198.CrossRefGoogle Scholar
  87. Sathananthan, A. H., and Trounson, A. O., 1982b, Ultrastructure of cortical granule release and zona interaction in monospermic and polyspermic human ova fertilized in vitro, Gamete Res. 6: 225–234.CrossRefGoogle Scholar
  88. Sato, K., and Blandau, R. J., 1979, Second meiotic division and polar body formation in mouse eggs fertilized in vitro, Gamete Res. 2: 283–293.CrossRefGoogle Scholar
  89. Schatten, G., Simerly, C., and Schatten, H., 1985, Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization, Proc. Natl. Acad. Sci. U.S.A. 82: 4152–4256.PubMedCrossRefGoogle Scholar
  90. Schatten, G., Schatten, H., Spector, I., Cline, C., Paweletz, N., Simerly, C., and Petzelt, C., 1986, Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice, Exp. Cell Res. 166: 191–208.PubMedCrossRefGoogle Scholar
  91. Schatten, G., Simerly, C., Asai, D. J., Szoke, E., Cooke, P., and Schatten, H., 1988, Acetylated a-tubulin in microtubules during mouse fertilization and early development, Dev. Biol. 130: 74–86.PubMedCrossRefGoogle Scholar
  92. Schatten, H., Cheney, R., Balczon, R., Willard, M., Cline, C., Simerly, C., and Schatten, G., 1986, Localization of fodrin during fertilization and early development of sea urchins and mice, Dev. Biol. 118: 457–466.PubMedCrossRefGoogle Scholar
  93. Schmell, E. O., Gulyas, B. J., and Hedrick, J. L., 1983, Egg surface changes during fertilization and the molecular mechanisms of the block to polyspermy, in: Mechanism and Control of Animal Fertilization ( J. E Hartmann, ed.), Academic Press, New York, pp. 365–413.Google Scholar
  94. Schroeder, R. E., 1981, Interrelations between the cell surface and the cytoskeleton in cleaving sea urchin eggs, in: Cytoskeletal Elements and Plasma Membrane Organization ( G. Poste and G. L. Nicolson, eds.), Elsevier/ North-Holland Biomedical Press, New York, pp. 169–216.Google Scholar
  95. Schuel, H., 1985, Functions of egg cortical granules, in: Biology of Fertilization, Vol. 3 ( C. B. Metz and A. Monroy, eds.), Academic Press, New York, pp. 1–44.CrossRefGoogle Scholar
  96. Schultz, R. M., Montgomery, R., and Belanoff, J. R., 1983, Regulation of mouse oocyte meiotic maturation: Implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis, Dev. Biol. 97: 264–273.PubMedCrossRefGoogle Scholar
  97. Schulze, E., Asai, D. J., Bulinski, J. C., and Kirschner, M., 1987, Posttranslational modification and microtubule stability. J. Cell Biol. 105: 2167–2177.PubMedCrossRefGoogle Scholar
  98. Shimizu, T., 1981, Cortical differentiation of the animal pole during maturation division in fertilized eggs of Tubifex (Annelida, Oligochaeta), Dev. Biol. 85: 7–88.Google Scholar
  99. Showman, R. M., Wells, D. E., Anstrom, J., Hursch, D. A., and Raff, R. A., 1982, Message specific sequestration of maternal histone in RNA in the sea urchin egg, Proc. Natl. Acad. Sci. U.S.A. 79: 5944–5947.PubMedCrossRefGoogle Scholar
  100. Sobel, J. S., and Alliegro, M. A., 1985, Changes in the distribution of a spectrin-like protein during development of the preimplantation mouse embryo, J. Cell Biol. 100: 333–336.PubMedCrossRefGoogle Scholar
  101. Stefanini, M., Oura, C., and Zamboni, L., 1969, Ultrastructural of fertilization in the mouse. 2. Penetration of the sperm into the ovum, J. Submicrosc. Cytol. 1: 1–23.Google Scholar
  102. Suzuki, S., Kitai, H., Tojo, R., Seki, K., Oba, M., Fujiwara, T, and Iizuka, R., 1981, Ultrastructural and some biologic properties of human oocytes and granulosa cells cultured in vitro, Fertil. Steril. 35: 142–148.PubMedGoogle Scholar
  103. Szollosi, D., 1967, Development of cortical granules and the cortical reaction in rat and hamster eggs, Anat. Rec. 159: 431–446.PubMedCrossRefGoogle Scholar
  104. Szollosi, D., 1976, Oocyte maturation and paternal contribution to the embryo in mammals, in: Current Topics in Pathology ( E. Grundmann and W. H. Kirsten, eds.), Springer-Verlag, New York, pp. 9–27.Google Scholar
  105. Szollosi, D., Calarco, P. G., and Donahue, R. P, 1972, Absence of centrioles in the first and second meiotic spindles of mouse oocytes, J. Cell Sci. 11: 521–541.PubMedGoogle Scholar
  106. Thibault, C., Szollosi, D., and Gerard, M., 1987, Mammalian oocyte maturation, Reprod. Natr. Dev. 27: 865–896.CrossRefGoogle Scholar
  107. Thompson, R. S., Moore-Smith, D., and Zamboni, L., 1974, Fertilization of mouse ova in vitro: an electron microscopy study, Fertil. Steril. 25: 222–249.PubMedGoogle Scholar
  108. Vacquier, V. D., 1981, Dynamic changes of the egg cortex, Dev. Biol. 84: 1–26.PubMedCrossRefGoogle Scholar
  109. Van Blerkom, J., 1985, Extragenomic regulation and autonomous expression of a developmental program in the early mouse embryo, Ann. N.Y. Acad. Sci. 442: 58–72.PubMedCrossRefGoogle Scholar
  110. Van Blerkom, J., and Bell, H., 1986, Regulation of development in the fully grown mouse oocyte: Chromosome-mediated temporal and spatial differentiation of the cytoplasm and plasma membrane, J Embryol. Exp. Morphol. 93: 213–238.PubMedGoogle Scholar
  111. Wablik-Sliz, B., and Kujat, R., 1979, The surface of mouse oocytes from two inbred strains differing in efficiency of fertilization, as revealed by scanning electron microscopy, Biol. Reprod. 20: 405–408.CrossRefGoogle Scholar
  112. Wassarman, P. M., and Fugiwara, K., 1978, Immunofluorescent anti-tubulin staining of spindles during meiotic maturation of mouse oocytes in vitro, J. Cell Sci. 29: 171–188.PubMedGoogle Scholar
  113. Wassarman, P. M., Bleil, J. D., Caseio, S. M., La Marca, M. J., Letourneau, G. E., Mrozak, S. C., and Schultz, R. M., 1981, Programming of gene expression during mammalian oogenesis. in: Bioregulators of Reproduction ( G. Jagiello and H. J. Vogel, eds.), Academic Press, New York, pp. 119–150.CrossRefGoogle Scholar
  114. Webb, M., Howlett, S. K., and Maro, B., 1986, Parthenogenesis and cytoskeletal organization in aging mouse eggs, J. Embryol. Exp. Morphol. 95: 131–145.PubMedGoogle Scholar
  115. Wolf, D. E., and Ziomek, C. A., 1983, Regionalizaion and lateral diffusion of membrane proteins in unfertilized and fertilized mouse eggs, J. Cell Biol. 96: 1786–1790.PubMedCrossRefGoogle Scholar
  116. Wolf, D. E., Edidin, M., and Handyside, A. H., 1981, Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: Indication from the lateral diffusion rates of fluorescent lipid analogs, Dev. Biol. 85: 195–198.PubMedCrossRefGoogle Scholar
  117. Wolf, N., Regan, C. L., and Fuller, M. T., 1988, Temporal and spatial pattern of differences in microtubule behavior during Drosophila embryogenesis revealed by distribution of a tubulin isoform, Development 102: 311–324.PubMedGoogle Scholar
  118. Yanagimachi, R., and Chang, M. C., 1961, Fertilizable life of golden hamster ova and their morphological changes at the trime of losing fertility, J. Exp. Zool. 148: 185–203.PubMedCrossRefGoogle Scholar
  119. Yanagimachi, R., and Noda, Y. D., 1970, Electron microscopic studies of sperm incorporation into the golden hamster egg, Am. J. Anat. 128: 429–462.PubMedCrossRefGoogle Scholar
  120. Yanagimachi, R., Nicolson, G. L., Noda, Y. D., and Fujimoto, M., 1973, Electron microscopic observations of the distribution of acidic anionic residues on hamster spermatozoa and eggs before and during fertilization, J. Ultrastruct. Res. 43: 344–353.PubMedCrossRefGoogle Scholar
  121. Zamboni, L., 1970, Ultrastructural of mammalian oocytes and ova, Biol. Reprod. [Suppl.] 2: 44–63.CrossRefGoogle Scholar
  122. Zamboni, L., 1971, Fine Morphology of Mammalian Fertilization, Harper and Row, New York.Google Scholar
  123. Zamboni, L., 1972, Comparative studies on the ultrastructure of mammalian oocytes, in: Oogenesis ( J. D. Biggers and A. W. Schuetz, eds.), University Park Press, Baltimore, pp. 5–45.Google Scholar
  124. Zamboni, L.,1974, Fine morphology of the follicle wall and follicle cell—oocyte association, Biol. Reprod. 10: 125–149.Google Scholar
  125. Zamboni, L., Thompson, R. S., and Smith, D. M.,1972, Fine morphology of human oocyte maturation in vitro, Biol. Reprod. 7: 425–457.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Frank J. Longo
    • 1
  1. 1.Department of AnatomyUniversity of IowaIowa CityUSA

Personalised recommendations