A Comparison of Mammalian Sperm Membranes

  • Gary E. Olson
  • Virginia P. Winfrey


Mammalian spermatozoa exhibit considerable species differences in their size and shape, yet they all possess the same set of cellular organelles assembled on a common architectural theme. The polarized spermatozoon is partitioned into distinct segments or domains, distinguished by specific subsets of the cellular organelles (Eddy, 1988; Fawcett, 1975). These include the acrosomal and postacrosomal segments of the head, followed by the connecting piece, midpiece, principal piece, and end piece segments of the flagellum. During fertilization, different segments perform specific functions in generating motility, in binding the zona pellucida, in penetrating the egg coats, and in fusing with the egg plasma membrane (Wassarman, 1987; Yanagimachi, 1988). The sperm plasma membrane plays a central role in regulating these functions, and it varies in structure and molecular composition in the different domains. In this chapter we discuss domain-specific properties of the plasma membrane and address mechanisms that may maintain their unique properties.


Zona Pellucida Acrosome Reaction Epididymal Spermatozoon Mouse Sperm Intramembranous Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benau, D. A., and Storey, B. T., 1987, Zona-binding site sensitive to trypsin inhibitors, Biol. Reprod. 32: 282–292.CrossRefGoogle Scholar
  2. Bleil, J. D., and Wassarman, P M., 1986, Autoradiographic visualization of the mouse egg’s sperm receptor bound to sperm, J. Cell. Biol. 102: 1363–1371.PubMedCrossRefGoogle Scholar
  3. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4: 487–525.PubMedCrossRefGoogle Scholar
  4. Camatini, M., Anelli, G., and Casale, A., 1986, Identification of actin in boar spermatids and spermatozoa by immunoelectron microscopy, Eur. J. Cell Biol. 42: 311–318.PubMedGoogle Scholar
  5. Clarke, G. N., Clarke, F. M., and Wilson, S., 1982, Actin in human spermatozoa, Biol. Reprod. 26: 319–327.PubMedCrossRefGoogle Scholar
  6. Cowan, A. E., Myles, D. G., and Koppel, D. E., 1987, Lateral diffusion of the PH-20 protein on guinea pig sperm: Evidence that barriers to diffusion maintain plasma membrane domains in mammalian sperm, J. Cell Biol. 104: 917–923.PubMedCrossRefGoogle Scholar
  7. Damjanov, I., Damjanov, A., Lehto, V.-P., and Virtanen, I., 1986, Spectrin in mouse gametogenesis and embryogenesis, Del). Biol 114: 132–140.CrossRefGoogle Scholar
  8. Eddy, E. M., 1988, The spermatozoon, in: The Physiology of Reproduction, Vol. 1 ( E. Knobil and J. D. Neill, eds.), Raven Press, New York, pp. 27–68.Google Scholar
  9. Eddy, E. M., Vernon, R. B., Muller, C. H., Hahnel, A. C., and Fenderson, B. A., 1985, Immunodissection of sperm surface modifications during epididymal maturation, Am. J. Anat. 174: 225–238.PubMedCrossRefGoogle Scholar
  10. Enders, G. C., Werb, Z., and Friend, D. S., 1983, Lectin binding to guinea-pig sperm zipper particles, J. Cell Sci. 60: 303–329.PubMedGoogle Scholar
  11. Endo, Y., Lee, M. A., and Kopf, G. S., 1988, Characterization of an islet-activating protein-sensitive site in mouse sperm that is involved in the zona pellucida-induced acrosome reaction, De,. Biol. 129: 12–24.Google Scholar
  12. Escalier, D., 1984, The cytoplasmic matrix of the human spermatozoon: Cross-filaments link the various cell compartments, Biol. Cell 51: 347–364.PubMedCrossRefGoogle Scholar
  13. Fawcett, D. W, 1975, The mammalian spermatozoon, Dey. Biol. 44: 394–436.CrossRefGoogle Scholar
  14. Flaherty, S. P, and Olson, G. E., 1988, Membrane domains in guinea pig sperm and their role in the membrane fusion events of the acrosome reaction, Anat. Rec. 220: 267–280.PubMedCrossRefGoogle Scholar
  15. Flaherty, S. P, Winfrey, V. P, and Olson, G. E., 1986, Localization of actin in mammalian spermatozoa: A comparison of eight species, Anat. Rec. 216: 504–515.PubMedCrossRefGoogle Scholar
  16. Flechon, J.-E., 1985, Sperm surface changes during the acrosome reaction as observed by freeze-fracture, Am. J. Anat. 174: 239–248.PubMedCrossRefGoogle Scholar
  17. Fournier-Delpech, S., Hamamah, S., Tananis-Anthony,C., Courot, M., and Orgebin-Crist, M.-C., 1984, Hormonal regulation of zona-binding ability and fertilizing ability of rat epididymal spermatozoa, Gamete Res. 9: 21–30.Google Scholar
  18. Friend, D. S., 1977, The organization of the spermatozoa) membrane, in: Immunobiology of Gametes ( M. Edidin and M. H. Johnson, eds.), Cambridge University Press, Cambridge, pp. 5–30.Google Scholar
  19. Friend, D. S., 1984, Membrane organization and differentiation in the guinea pig spermatozoon, in: Ultrastructure of Reproduction J. Van Blerkom and P. M. Motta, eds.), Martinus Nijhoff, Boston, pp. 75–85.Google Scholar
  20. Friend, D. S., and Fawcett, D. W, 1974, Membrane differentiations in freeze-fractured mammalian sperm, J. Cell Biol. 63: 641–664.PubMedCrossRefGoogle Scholar
  21. Friend, D. S., Orci, L., Perrelet, A., and Yanagimachi, R., 1977, Membrane particle changes attending the acrosome reaction in guinea pig spermatozoa, J. Cell Biol. 74: 561–577.PubMedCrossRefGoogle Scholar
  22. Halenda, R. M., Primakoff, P, and Myles, D. G., 1987, Actin filaments, localized to the region of the developing acrosome during early stages, are lost during later stages of guinea pig spermiogenesis, Biol. Reprod. 36: 491–499.PubMedCrossRefGoogle Scholar
  23. Hoffman, L. H., Wimsatt, W. A., and Olson, G. E., 1987, Plasma membrane structure of bat spermatozoa: Observations on epididymal and uterine spermatozoa in Myotis lucifugus, Am. J. Anat. 178: 326–334.PubMedCrossRefGoogle Scholar
  24. Holt, W. V., 1984, Membrane heterogeneity in the mammalian spermatozoon, Int. Rev. Cytol. 87: 159–194.PubMedCrossRefGoogle Scholar
  25. Koehler, J. K., 1966, Fine structure observations in frozen-etched bovine spermatozoa, J. Ultrastruct. Res. 16: 359–375.PubMedCrossRefGoogle Scholar
  26. Koehler, J. K., 1978a, The mammalian sperm surface: Studies with specific labeling techniques, Int. Rev. Cytol. 54: 73–108.PubMedCrossRefGoogle Scholar
  27. Koehler, J. K., 1978b, Observations on the fine structure of vole spermatozoa with particular reference to cytoskeletal elements in the mature sperm head, Gamete Res. 1: 247–257.CrossRefGoogle Scholar
  28. Koehler, J. K., and Gaddum-Rosse, P, 1975, Media induced alterations of the membrane associated particles of the guinea pig sperm tail, J. Ultrastruct. Res. 51: 106–118.PubMedCrossRefGoogle Scholar
  29. Lakoski, K. A., Carron, D. P, Cabot, C. L., and Saling, P. M., 1988, Epididymal maturation and the acrosome reaction in mouse sperm: Response to zona pellucida develops coincident with modification of M42 antigen, Biol. Reprod. 38: 221–233.PubMedCrossRefGoogle Scholar
  30. Leyton, L., and Saling, P, 1989a, Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction, J. Cell Biol. 108: 2163–2168.PubMedCrossRefGoogle Scholar
  31. Leyton, L., and Saling, P., 1989b, 95kd sperm proteins bind ZP3 and serve as tyrosine kinase substrates in response to zona binding, Cell 57: 1123–1130.Google Scholar
  32. Longo, F. J., Krohne, G., and Franke, W., 1987, Basic proteins of the perinuclear theca of mammalian spermatozoa and spermatids: A novel class of cytoskeletal elements, J. Cell Biol. 105: 1105–1120.PubMedCrossRefGoogle Scholar
  33. Magargee, S., Kunze, E., and Hammerstedt, R. H., 1988, Changes in lectin-binding features of ram sperm surfaces associated with epididymal maturation and ejaculation, Biol. Reprod. 38: 667–685.PubMedCrossRefGoogle Scholar
  34. Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell Biol. 1: 531–561.PubMedCrossRefGoogle Scholar
  35. Meizel, S., 1985, Molecules that initiate or help stimulate the acrosome reaction by their interaction with the mammalian sperm surface, Am. J. Anat. 174: 285–302.PubMedCrossRefGoogle Scholar
  36. Myles, D. G., Primakoff, P, and Koppel, D. E., 1984, A localized surface protein of guinea pig sperm exhibits free diffusion in its domain, J. Cell Biol. 98: 1905–1909.PubMedCrossRefGoogle Scholar
  37. Ochs, D., Wolf, D. P, and Ochs, R. L., 1986, Intermediate filament proteins in human sperm heads, Exp. Cell Res. 167: 495–504.PubMedCrossRefGoogle Scholar
  38. Olson, G. E., 1980, Changes in intramembranous particle distribution in the plasma membrane of Didelphis virginiana spermatozoa during maturation in the epididymis, Anat. Rec. 197: 471–488.PubMedCrossRefGoogle Scholar
  39. Olson, G. E., and Winfrey, V. P., 1985, Substructure of a cytoskeletal complex associated with the hamster sperm acrosome, J. Ultrastruct. Res. 92: 167–179.PubMedCrossRefGoogle Scholar
  40. Olson, G. E., and Winfrey, V. P., 1988, Characterization of the postacrosomal sheath of bovine spermatozoa, Gamete Res. 20: 329–342.PubMedCrossRefGoogle Scholar
  41. Olson, G. E., Noland, T. D., Winfrey, V. P, and Garbers, D. L., 1983, Substructure of the postacrosomal sheath of bovine spermatozoa, J. Ultrastruct. Res. 85: 204–218.PubMedCrossRefGoogle Scholar
  42. Olson, G. E., Lifsics, M. R., Winfrey, V. P, and Rifkin, J. M., 1987, Modification of the rat sperm flagellar plasma membrane during maturation in the epididymis, J. Androl. 8: 129–147.PubMedGoogle Scholar
  43. Olson, G. E., Winfrey, V. P., and Flaherty, S. P, 1990, Membrane-cytoskeleton interactions in the sperm acrosome, in: Gamete Physiology ( R. Asch, J. Balmaceda, and J. Johnston, eds.), Serono Symposia, Newport Beach, California, pp. 109–118.Google Scholar
  44. O’Rand, M. G., 1977, Restriction of a sperm surface antigen’s mobility during capacitation, Dev. Biol. 55: 260–270.PubMedCrossRefGoogle Scholar
  45. Parks, J. E., and Hammerstedt, R. H., 1985, Developmental changes occurring in the lipids of ram epididymal spermatozoa plasma membranes, Biol. Reprod. 32: 653–668.PubMedCrossRefGoogle Scholar
  46. Pelletier, R.-M., and Friend, D. S., 1983, Development of membrane differentiations in the guinea pig spermatid during spermiogenesis, Am. J. Anat. 167: 119–141.PubMedCrossRefGoogle Scholar
  47. Phelps, B. M., Primakoff, P, Koppel, D. E., Low, M. G., and Myles, D. G., 1988, Restricted lateral diffusion of PH-20, a PI-anchored sperm membrane protein, Science 240: 1780–1782.PubMedCrossRefGoogle Scholar
  48. Phillips, D. M., 1975, Cell surface structure of rodent sperm heads, J. Exp. Zool. 191: 1–8.PubMedCrossRefGoogle Scholar
  49. Reger, J. E, Fain-Maurel, M. A., and Dadoune, J.-P, 1985, A freeze-fracture study on epididymal and ejaculate spermatozoa of the monkey (Macaca fascicularis), J. Submicrosc. Cytol. 17: 49–56.PubMedGoogle Scholar
  50. San Agustin, J. T., Hughes, P, and Lardy, H. A., 1987, Properties and function of caltrin, the calcium-transport inhibitor of bull seminal plasma, FASEB J. 1: 60–66.Google Scholar
  51. Shur, B. D., and Neely, C. A., 1988, Plasma membrane association, and partial characterization of mouse sperm 31,4-galactosyltransferase, J. Biol. Chem. 263: 17706–17714.PubMedGoogle Scholar
  52. Singer, S. J., and Nicolson, G. L., 1972, A fluid-mosaic model for the cell membrane, Science 175: 720–731.PubMedCrossRefGoogle Scholar
  53. Stackpole, C. W., and Devorkin, D., 1974, Membrane organization in mouse spermatozoa revealed by freeze-etching, J. Ultrastruct. Res. 49: 167–187.PubMedCrossRefGoogle Scholar
  54. Suzuki, E, 1981, Changes in intramembranous particle distribution in epididymal spermatozoa of the boar, Anat. Rec. 199: 361–376.PubMedCrossRefGoogle Scholar
  55. Suzuki, E, and Nagano, T., 1980a, Epididymal maturation of rat spermatozoa studies by thin sectioning and freeze-fracture, Biol. Reprod. 22: 1219–1231.PubMedGoogle Scholar
  56. Suzuki, F., and Nagano, T., 19806, Morphological relationship between the plasma membrane and the microtubules in the end piece of the boar spermatozoa, J. Electron Microsc. 29: 190–192.Google Scholar
  57. Suzuki, E, and Yanagimachi, R., 1986, Membrane changes in Chinese hamster spermatozoa during epididymal maturation, J. Ultrastruct. Mol. Struct. Res. 96: 91–104.PubMedCrossRefGoogle Scholar
  58. Talbot, P, 1985, Sperm penetration through oocyte investments in mammals, Am. J. Anat. 174: 331–346.PubMedCrossRefGoogle Scholar
  59. Toshimori, K., Higashi, R., and Oura, C., 1985, Distribution of intramembranous particles and filipin-sterol complexes in mouse sperm membranes: Polyene antibiotic filipin treatment, Am. J. Anat. 174: 455–470.PubMedCrossRefGoogle Scholar
  60. Toshimori, K., Higashi, R., and Oura, C., 1987, Filipin-sterol complexes in golden hamster sperm membranes with special reference to epididymal maturation, Cell Tissue Res. 250: 673–6680.PubMedCrossRefGoogle Scholar
  61. Toyama, Y., and Nagano, T., 1983, Boar spermatozoa observed by rapid-freeze and deep-etch method, Anat. Rec. 206: 171–179.CrossRefGoogle Scholar
  62. Toyama, Y., and Nagano, T., 1988, Maturation changes of the plasma membrane of rat spermatozoa observed by surface replica, rapid-freeze and deep-etch and freeze-fracture methods, Anat. Rec. 220: 43–50.PubMedCrossRefGoogle Scholar
  63. Vernon, R. B., Hamilton, M. S., and Eddy, E. M., 1985, Effects of in vivo and in vitro fertilization environments on the expression of a surface antigen of the mouse sperm tail, Biol. Reprod. 32: 669–680.PubMedCrossRefGoogle Scholar
  64. Virtanen, I., Badley, R. A., Paasivuo, R., and Lehto, V.-P, 1984, Distinct cytoskeletal domains revealed in sperm cells, J. Cell Biol. 99: 1083–1091.PubMedCrossRefGoogle Scholar
  65. Wassarman, P. M., 1987, The biology and chemistry of fertilization, Science 235: 553–560.PubMedCrossRefGoogle Scholar
  66. Wassarman, P. M., 1988, Zona pellucida glycoproteins, Annu. Rev. Biochem. 57: 415–442.PubMedCrossRefGoogle Scholar
  67. Welch, J. E., and O’Rand, M. G., 1985, Identification and distribution of actin in spermatogenic cells and spermatozoa of the rabbit, Dev. Biol. 109: 411–417.PubMedCrossRefGoogle Scholar
  68. Yanagimachi, R., 1988, Mammalian fertilization, in: The Physiology of Reproduction, Vol. 1 ( E. Knobil and J. D. Neill, eds.), Raven Press, New York, pp. 135–186.Google Scholar
  69. Yanagimachi, R., and Suzuki, F., 1985, A further study of lysolecithin-mediated acrosome reaction of guinea pig spermatozoa, Gamete Res. 11: 29–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gary E. Olson
    • 1
  • Virginia P. Winfrey
    • 1
  1. 1.Department of Cell BiologyVanderbilt UniversityNashvilleUSA

Personalised recommendations