Use of Molecular Biology to Study Development and Function of Mammalian Oocytes

  • Debra J. Wolgemuth

Abstract

Elucidating the genetic program that controls the differentiation of mammalian gametes has been complicated by various factors, including the small size, small numbers, and relative inaccessibility of the cells. In this chapter, I review recent advances in molecular biological approaches and methods that now make this task feasible. Although particular emphasis is placed on analysis at the level of the genes and their mRNAs, analysis of proteins is equally important. Rather than providing a catalogue of the temporal expression of genes during oogenesis, this review illustrates how different approaches have been used to elucidate the pattern of expression of a few of the better-characterized genes.

Keywords

Mouse Oocyte Zinc Finger Domain Male Germ Cell Meiotic Maturation Mammalian Oocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachvarova, R., 1985, Gene expression during oogenesis and oocyte development in mammals, in: Developmental Biology, Vol. 1 ( L. W. Browder, ed.), Plenum Press, New York, pp. 453–524.Google Scholar
  2. Bass, B. L., and Weintraub, H., 1988, An unwinding activity that covalently modifies its double-stranded RNA substrate, Cell 55: 1089–1098.PubMedCrossRefGoogle Scholar
  3. Bellen, H. J., O’Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K., and Gehring, W. J., 1989, P-element mediated enhancer detection: A versatile method to study development in Drosophila, Genes Dev. 3: 1288–1300.PubMedCrossRefGoogle Scholar
  4. Belive, A. R., Cavicchia, J. C., Millette, C. E, O’Brien, D. A., Bhatnagar, Y. M., and Dym, M., 1977, Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization, J. Cell Biol. 74: 68–85.CrossRefGoogle Scholar
  5. Chamberlin, M. E., and Dean, J., 1989, Genomic organization of a sex specific gene: The primary sperm receptor of the mouse zona pellucida, Dev. Biol. 131: 207–214.PubMedCrossRefGoogle Scholar
  6. Chavrier, P., Lemaire, P, Relevant, O., Bravo, R., and Charnay, P, 1988, Characterization of a mouse multigene family that encodes zinc finger structures, Mol. Cell. Biol. 8: 1319–1326.PubMedGoogle Scholar
  7. Chowdhury, K., Deutsch, U., and Gruss, P, 1987, A multigene family encoding several “finger” structures is present and differentially active in mammalian genomes, Cell 48: 771–778.PubMedCrossRefGoogle Scholar
  8. Chowdhury, K., Rohdewohld, H., Gruss, P, 1988, Specific and ubiquitous expression of different zinc finger protein genes in mouse, Nuc. Acids Res. 16: 9995–10011.CrossRefGoogle Scholar
  9. Davis, R. L., Weintraub, H. A., and Lassar, A. B., 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell 51: 987–1000.PubMedCrossRefGoogle Scholar
  10. Erlich, H. A., Gelfand, D. H., and Saiki, R. K., 1988, Specific DNA amplification, Science 331: 461–462.Google Scholar
  11. Evans, R., and Hollenberg, S. M., 1988, Zinc fingers: Gilt by association, Cell 52: 1–3.PubMedCrossRefGoogle Scholar
  12. Frohman, M. A., and Martin, G. R., 1989, Cut, paste, and save: New approaches to altering specific genes in mice, Cell 56: 145–147.PubMedCrossRefGoogle Scholar
  13. Frohman, M. A., Dush, M. K., and Martin, G. R., 1988, Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer, Proc. Natl. Acad. Sci. U.S.A. 85: 8998–9002.PubMedCrossRefGoogle Scholar
  14. Gautier, J., Norbury, C., Lohka, M., Nurse, P, and Mailer, J., 1988, Purified maturation-promoting factor contains the product of a Xenopus homologue of the fission yeast cell cycle control gene cdc2+, Cell 54: 433–439.PubMedCrossRefGoogle Scholar
  15. Goldman, D. S., Kisseling, A. A., Millette, C. F, and Cooper, G. M., 1987, Expression of c-mos RNA in germ cells of male and female mice, Proc. Natl. Acad. Sci. U.S.A. 84: 4509–4513.PubMedCrossRefGoogle Scholar
  16. Gossler, A., Joyner, A. L., Rossant, J., and Skarnes, W. C., 1989, Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes, Science 244: 463–465.PubMedCrossRefGoogle Scholar
  17. Grossniklaus, U., Bellen, H. J., Wilson, C., and Gehring, W. J., 1989, P-element-mediated enhancer detection applied to the study of oogenesis in Drosophila, Development 107: 189–200.PubMedGoogle Scholar
  18. Guyer, R. L., and Koshland, D. E., 1989, The molecule of the year, Science 246: 1543–1546.PubMedCrossRefGoogle Scholar
  19. He, X., Zteacy, M. N., Simmons, D. M., Ingraham, H. A., Swanson, L. W, and Rosenfeld, M. G., 1989, Expression of a large family of POU-domain regulatory genes in mammalian brain development, Nature 340: 35–42.PubMedCrossRefGoogle Scholar
  20. Herr, W, Sturm, R. A., Clerc, R. G., Corcoran, L. M., Baltimore, D., Sharp, P. A., Ingraham, H. A., Rosenfeld, M. G., Finney, M., Ruvkun, G., and Horvitz, H. R., 1988, The POU domain: A large conserved region in the mammalian pit-1, oct-1, act-2, and Caenorrhabditis elegans unc-86 gene products, Genes Dev. 2: 1513–1516.PubMedCrossRefGoogle Scholar
  21. Higuchi, R., von Beroldingen, C. H., Sensabaugh, G. E, and Erlich, H. A., 1988, DNA typing from single hairs, Nature 332: 543–546.PubMedCrossRefGoogle Scholar
  22. Holland, P, and Hogan, B., 1988, Expression of homeo box genes during development, Genes Dev. 2: 773–782.PubMedCrossRefGoogle Scholar
  23. Keshet, E., Rosenberg, M. P, Mercer, J. A., Propst, F., Vande Woude, G. F., Jenkins, N. A., and Copeland, N. G., 1987, Developmental regulation of ovarian-specific mos expression, Oncogene 2: 235–240.Google Scholar
  24. Kleene, K., Distel, R. J., and Hecht, N. B., 1985, Nucleotide sequence of a cDNA clone encoding mouse protamine 1, Biochemistry 24: 719–722.PubMedCrossRefGoogle Scholar
  25. Koopman, P, Gubbay, J., Collignon, J., and Lovell-Badge, R., 1989, Zfy gene expression patterns are not compatible with a primary role in mouse sex determination, Nature 342: 940–942.PubMedCrossRefGoogle Scholar
  26. Labbe, J. C., Lee, M. G., Nurse, P, Picard, A., and Doree, M., 1988, Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+, Nature 335: 251–254.PubMedCrossRefGoogle Scholar
  27. Landschulz, W. H., Johnson, P. F., and McKnight, S. L., 1988, The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins, Science 240: 1759–1764.PubMedCrossRefGoogle Scholar
  28. Lewis, E. B., 1978, A gene complex controlling segmentation in Drosophila, Nature 276: 565–570.PubMedCrossRefGoogle Scholar
  29. Loh, E. Y., Elliott, J. E, Cwirla, S., Lanier, L. L., and Davis, M. M., 1989, Polymerase chain reaction with single-sided specificity: Analysis of T cell receptor delta chain, Science 243: 217–220.PubMedCrossRefGoogle Scholar
  30. Masui, Y., and Markert, C. L., 1971, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, J. Exp. Zool. 177: 129–146.PubMedCrossRefGoogle Scholar
  31. McGinnis, W., Levine, M., Hafen, E., Kuroiwa, A., and Gehring, W. J., 1984a, A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and Bithorax complexes, Nature 308: 428–433PubMedCrossRefGoogle Scholar
  32. McGinnis, W., Hart, C. P., Gehring, W. J., and Ruddle, E. H., 1984b, Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila, Cell 38: 675–680.PubMedCrossRefGoogle Scholar
  33. Meijer, L., Arion, D., Golsteyn, R., Brizuela, L., Hunt, T., and Beach, D., 1989, Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase, EMBO J. 8: 2275–2282.PubMedGoogle Scholar
  34. Melton, D. A., 1985, Injected anti-sense RNAs specifically block messenger RNA translation in vivo, Proc. Natl. Acad. Sci. U.S.A. 82: 144–148.PubMedCrossRefGoogle Scholar
  35. Melton, D. A., 1987, Translocation of maternal mRNA to the vegetal pole of Xenopus oocytes, Nature 328: 80–82.PubMedCrossRefGoogle Scholar
  36. Mlodzik, M., and Gehring, W. J., 1987, Expression of the caudal gene in the germ line ofDrosophila: Formation of an RNA and protein gradient during early embryogenesis, Cell 48: 465–478.PubMedCrossRefGoogle Scholar
  37. Mlodzik, M., Fjose, A. and Gehring, W. J., 1985, Isolation of caudal, a Drosophila homeobox-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage, EMBO J. 4: 2961–2969.PubMedGoogle Scholar
  38. Muller, M. M., Carrasco, A. E., and DeRobertis, E. M., 1984, A homeobox-containing gene expressed during oogenesis in Xenopus, Cell 39: 157–162.PubMedCrossRefGoogle Scholar
  39. Mutter, G. L., and Wolgemuth, D. J., 1987, Distinct developmental patterns of c-mos protooncogene expression in female and male germ cells, Proc. Natl. Acad. Sci. U.S.A. 84: 5301–5305.PubMedCrossRefGoogle Scholar
  40. Mutter, G. L., Grills, G. S., and Wolgemuth, D. J., 1988, Evidence for the involvement of the proto-oncogene c-mos in mammalian meiotic maturation and possibly very early embryogenesis, EMBO J. 7: 683–389.PubMedGoogle Scholar
  41. Nagamine, C. M., Chan, K., Hake, L. E., and Lau, Y.-E C., 1990, The two candidate testis-determining Y genes (Zfy-1, Zfy-2) are differentially expressed in fetal and adult mouse tissues, Genes Dey. 4: 63–74.CrossRefGoogle Scholar
  42. O’Kane, C. J., and Gehring, W. J., 1984, Detection in situ of genomic regulatory elements in Drosophila, Proc. Natl. Acad. Sci. U.S.A. 84: 9123–9127.CrossRefGoogle Scholar
  43. O’Keefe, S. J., Wolfes, H., Kiessling, A. A., and Cooper, G. M., 1989, Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg, Proc. Natl. Acad. Sci. U.S.A. 86: 7038–7042.PubMedCrossRefGoogle Scholar
  44. Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M. C., Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A., and Brown, L. G., 1987, The sex-determining region of the human Y chromosome encodes a finger protein, Cell 51: 1091–1104.PubMedCrossRefGoogle Scholar
  45. Palmer, M. S., Sinclair, A. H., Berta, P., Ellis, N. A., Goodfellow, P N., Abbas, N. E., and Fellous, M., 1989, Genetic evidence that ZFY is not the testis-determining factor, Nature 342: 937–939.PubMedCrossRefGoogle Scholar
  46. Paules, R. S., Buccione, R., Moschel, R. C., Vande Woude, G. F., and Eppig, J., 1989, Mouse mos proto-oncogene product is present and functions during oogenesis, Proc. Natl. Acad. Sci. U.S.A. 86: 5395–5399.PubMedCrossRefGoogle Scholar
  47. Peschon, J. J., Behringer, R. R., Brinster, R. L., and Palmiter, R. D., 1987, Spermatid-specific expression of protamine 1 in transgenic mice, Proc. Natl. Acad. Sci. U.S.A. 84: 5316–5319.PubMedCrossRefGoogle Scholar
  48. Peters, H., 1969, The development of the mouse ovary from birth to maturity, Acta Endocrionol. 62: 98–116.Google Scholar
  49. Pines, J., and Hunter, T., 1989, Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2, Cell 58: 833–846.PubMedCrossRefGoogle Scholar
  50. Ponzetto, C., and Wolgemuth, D. J., 1985, Haploid expression of a unique c-abl transcript in the mouse male germ line, Mol. Cell. Biol. 5: 1791–1794.PubMedGoogle Scholar
  51. Ponzetto, C., Wadewitz, A. G., Pendergast, A. M., Witte, O. N., and Wolgemuth, D. J., 1989, P150,- “ is detected in mouse male germ cells by an in vitro kinase assay and is associated with stage-specific phosphoproteins in haploid cells, Oncogene 4: 685–690.PubMedGoogle Scholar
  52. Propst, F., Rosenberg, M. P, Iyer, A., Kaul, K., and Vande Woude, G. F, 1987, C-mos proto-oncogene RNA transcripts in mouse tissues: Structural features, developmental regulation, and localization in specific cell types, Mol. Cell. Biol. 7: 1629–1637.Google Scholar
  53. Rappolee, D. A., Brenner, C. A., Schultz, R., Mark, D., and Werb, Z., 1988, Developmental expression of PDGF, TGF-alpha, and TGF-beta genes in preimplantation mouse embryos, Science 241: 1823–1825.PubMedCrossRefGoogle Scholar
  54. Rappolee, D. A., Wang, A., Mark, D., and Werb, Z., 1989, Novel method for studying mRNA phenotypes in single or small numbers of cells, J. Cell. Biochem. 39: 1–11.PubMedCrossRefGoogle Scholar
  55. Robertson, E. J., Bradley, A., Kuehn, M., and Evans, M., 1986, Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vectors, Nature 323: 445–447.PubMedCrossRefGoogle Scholar
  56. Rosenberg, U. B., Schroder, C., Preiss, A., Kienlin, A., Cote, S., Riede, I., and Jackie, H., 1986, Structural homology of the product of the Drosophila kruppel gene with Xenopus transcription factor IIIA, Nature 319: 336–339.CrossRefGoogle Scholar
  57. Ruiz i Altaba, A., and Melton, D. A., 1989, Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior-posterior axis, Cell 57: 317–326.CrossRefGoogle Scholar
  58. Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D., and Vande Woude, G. E, 1989a, The produce of the mos protooncogene as a candidate “initiator” for oocyte maturation, Science 245: 643–645.PubMedCrossRefGoogle Scholar
  59. Sagata, N., Watanabe, N., Vande Woude, G. E, and Ikawa, Y., 1989b, The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs, Nature 342: 512–518.PubMedCrossRefGoogle Scholar
  60. Schafer, B. W, Blakely, B. T., Darlington, G. J., and Blau, H. M., 1990, Effect of cell history on response to helixloop-helix family of myogenic regulators, Nature 344: 454–456.PubMedCrossRefGoogle Scholar
  61. Schwartzberg, P., Goff, S. P, and Robertson, E. J., 1989, Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells Science 246: 799–803.Google Scholar
  62. Scott, M. P, and Weiner, A. J., 1984, Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrbithorax, and Fushi tarazu loci of Drosophila, Proc. Natl. Acad. Sci. U.S.A. 81: 4115–4119.PubMedCrossRefGoogle Scholar
  63. Strickland, S., Huarte, J., Belin, D., Vassalli, A., Rickles, R. J., and Vassalli, J.-D., 1988, Antisense RNA directed against the 3’ noncoding region prevents dormant mRNA activation in mouse oocytes, Science 241: 680–684PubMedCrossRefGoogle Scholar
  64. Swenson, K. I., Farrell, K. M., and Ruderman, J. V., 1986, The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes, Cell 47: 861–870.PubMedCrossRefGoogle Scholar
  65. Thomas, K. H., Wilkie, T. M., Tomashefsky, P, Bellve, A. R., and Simon, M. I., 1989, Differential gene expression during mouse spermatogenesis, Biol. Reprod. 41: 729–739.PubMedCrossRefGoogle Scholar
  66. Thomas, K. R., and Capecchi, M. R., 1987, Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells, Cell 51: 503–512.PubMedCrossRefGoogle Scholar
  67. Watanabe, N., Vande Woude, G. F., Ikawa, Y., and Sagata, N., 1989, Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs, Nature 342: 505–511.PubMedCrossRefGoogle Scholar
  68. Weintraub, H., Izant, J. C., and Harland, R. M., 1985, Anti-sense RNA as a molecular tool for genetic analysis, Trends Genet. 1: 22–25.CrossRefGoogle Scholar
  69. Whitfield, W. G., Gonzalez, C., Sanchez-Herrero, E., and Glover, D. M., 1989, Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis, Nature 338: 337–340.PubMedCrossRefGoogle Scholar
  70. Williams, J. F., 1989, Optimization strategies for the polymerase chain reaction, BioTechniques 7: 762–767.PubMedCrossRefGoogle Scholar
  71. Wolgemuth, D. J., Gizang-Ginsberg, E., Engelmyer, E., Gavin, B. J., and Ponzetto, C., 1985, Separation of mouse testis cells on a Celsep’“ apparatus and their usefulness as a source of high molecular weight DNA or RNA, Gamete Res. 12: 1–10.PubMedCrossRefGoogle Scholar
  72. Wolgemuth. D. J., Engelmeyer, E., Duggal, R. N., Gizang-Ginsberg, E. E., Mutter, G. L., Ponzetto, C., Vivano, C., and Zakeri, Z. F, 1986, Isolation of a mouse cDNA coding for a developmentally regulated, testis-specific transcript containing homeo box homology, EMBO J. 5: 1229–1235.Google Scholar
  73. Wolgemuth, D. J., Viviano, C. M., Gizang-Ginsberg, E., Frohman, M. A., Joyner, A. L., and Martin, G. R., 1987, Differential expression of the mouse homeobox-containing gene Hox-1.4 during male germ cell differentiation and embryonic development, Proc. Natl. Acad. Sci. U.S.A. 84: 5813–5817.PubMedCrossRefGoogle Scholar
  74. Wolgemuth, D. J., Behringer, R. R., Mostoller, M. P, Brinster, R. L., and Palmiter, R. D., 1989, Transgenic mice overexpressing the mouse homeobox-containing gene Hox-1.4 exhibit abnormal gut development, Nature 337: 464–467.PubMedCrossRefGoogle Scholar
  75. Wright, C. V. E., Cho, K. W. Y., Hardwicke, J., Collins, R. H., and DeRobertis, E. M., 1989, Interference with function of a homeobox gene in Xenopus embryos produces malformations of the anterior spinal cord, Cell 59: 81–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Debra J. Wolgemuth
    • 1
  1. 1.Department of Genetics and Development, and Center for Reproductive SciencesColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations