Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 1))

Abstract

Any solid-state laser operating in either cw or pulsed mode of operation must dissipate an appreciable amount of heat. The heat arises because:

  1. 1.

    the energy difference between the pump bands and the fluorescence energy levels is lost to the host lattice through radiationless transitions;

  2. 2.

    the quantum efficiency of the fluorescence processes involved in the laser transitions is less than unity, therefore some of the photon lose their total energy to the host lattice;

  3. 3.

    the spectral distribution of the pump light is such that there is considerable absorption by the host directly, mainly in the ultraviolet and infrared bands, in which case all energy in those spectral regions is converted into heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Carslaw, J. C. Jaeger: Conduction of Heat in Solids ( Oxford University Press, London, 1948 ), p. 191

    Google Scholar 

  2. S. T. Hsu: Engineering Heat Transfer (D. Van Nostrand, Princeton, N.J., 1963 ), pp. 274–309

    Google Scholar 

  3. W. Koechner: Appl. Opt. 9, 1429 (1970)

    Article  ADS  Google Scholar 

  4. W. Koechner: J. Appl. Phys. 44, 3162 (1973)

    Article  ADS  Google Scholar 

  5. S. Timoshenko, J. N. Goodier: Theory of Elasticity ( McGraw-Hill, New York, 1951 )

    MATH  Google Scholar 

  6. W. Koechner: J. Appl. Phys. 2, 279 (1973)

    Article  ADS  Google Scholar 

  7. M. Born, E. Wolf: Principles of Optics ( Pergamon Press, London, 1965 )

    Google Scholar 

  8. J. F. Nye: Physical Properties of Crystals (Oxford University Press, London, 1964 )

    Google Scholar 

  9. R. W. Dixon: J. Appl. Phys. 38, 5149 (1967)

    Article  ADS  Google Scholar 

  10. J. D. Foster, L. M. Osterink: J. Appl. Phys. 41, 3656 (1970)

    Article  ADS  Google Scholar 

  11. W. Koechner, D. K. Rice: IEEE J. Quant. Electr. QE-6, 557 (1970)

    Google Scholar 

  12. H. Kogelnik: Bell Syst. Tech. J. 44, 455 (1965)

    Google Scholar 

  13. D. A. LaMarre: High Performance Laser Research, Report AD 840913, American Optical Corp. (June 1968)

    Google Scholar 

  14. W. Koechner: Appl. Opt. 9, 2548 (1970)

    Article  ADS  Google Scholar 

  15. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, G. W. Roland: Appl. Opt. 11, 999 (1972)

    Article  ADS  Google Scholar 

  16. K. B. Steinbruegge, G. D. Baldwin: Appl. Phys. Letters 25, 220 (1974)

    Article  ADS  Google Scholar 

  17. G. D. Baldwin: Q-switched evaluation of Nd:CaLaSOAP, Final Report AFAL-TR-72–334, Air Force Avionics Lab., Wright Patterson AFB, Ohio (September 1972)

    Google Scholar 

  18. A. Stein: CW YAG laser techniques, Report AD 743979, US Army Electronics Command, Fort Monmouth, N.J. (May 1972)

    Google Scholar 

  19. M. A. Karr: Appl. Opt. 10, 893 (1971)

    Article  ADS  Google Scholar 

  20. L. M. Osterink, J. D. Foster: Appl. Phys. Letters 12, 128 (1968)

    Article  ADS  Google Scholar 

  21. W. C. Scott, M. deWitt: Appl. Phys. Letters 18 (1971)

    Google Scholar 

  22. W. Koechner, D. K. Rice: J. Opt. Soc. Am. 61, 758 (1971)

    Article  ADS  Google Scholar 

  23. S. D. Sims, A. Stein, C. Roth: Appl. Opt. 5, 621 (1966)

    Article  ADS  Google Scholar 

  24. R. L. Townsend, C. M. Stickley, A. D. Maio: Appl. Phys. Letters 7, 94 (1965)

    Article  ADS  Google Scholar 

  25. H. Welling, C. J. Bickart, H. G. Andresen: IEEE Trans. Quant. Electr. QE-1, 223 (1965)

    Google Scholar 

  26. G. D. Baldwin, E. P. Riedel: J. Appl. Phys. 38, 2726 (1967)

    Article  ADS  Google Scholar 

  27. A. P. Veduta, A. M. Leontovich, V. N. Smorchkov: Soy. Phys. JETP 21, 59 (1965)

    ADS  Google Scholar 

  28. S. Epstein: J. Appl. Phys. 38, 2715 (1967)

    Article  ADS  Google Scholar 

  29. A. Y. Cabezas, L. G. Kornai, R. P. Treat: Appl. Opt. 5, 647 (1966)

    Article  ADS  Google Scholar 

  30. J. W. Carson: Dynamic optical properties of laser materials, Final Tech. Report No. P66–135, Office of Naval Research, Washington, D.C. (1966)

    Google Scholar 

  31. D. C. Burnham Appl. Opt. 9, 1727 (1970)

    Article  ADS  Google Scholar 

  32. D. White, D. Gregg: Appl. Opt. 4, 1034 (1965)

    Article  ADS  Google Scholar 

  33. F. W. Quelle: Appl. Opt. 5, 633 (1966)

    Article  ADS  Google Scholar 

  34. E. P. Riedel, G. D. Baldwin: J. Appl. Phys. 38, 2720 (1967)

    Article  ADS  Google Scholar 

  35. E. Snitzer, C. G. Young: Lasers, Vol. 2, ed. A. K. Levine ( Marcel Dekker, New York, 1968 ), pp. 191–256

    Google Scholar 

  36. E. Matovich: The axial gradient laser, Proc. DOD Conf. on Laser Technology, San Diego, Calif. (1970), pp. 311–361

    Google Scholar 

  37. M: K. Chun, J. T. Bischoff: IEEE J. Quant. Electr. QE-7, 200 (1971)

    Google Scholar 

  38. K. Richter, W. Koechner: Appl. Phys. 3, 205 (1974)

    Article  ADS  Google Scholar 

  39. V. I. Danilovskaya, V. N. Zubchaninova: Temperature stresses forming in cylinders under the effect of a luminous flux, U.S. Government Res. & Dev. Report 70, No. AD-704–020 (1970)

    Google Scholar 

  40. B. A. Ermakov, A. V. Lukin: Soy. Phys. 15, 1097 (1971)

    Google Scholar 

  41. S. D. Sims, A. Stein, C. Roth: Appl. Opt. 6, 579 (1967)

    Article  ADS  Google Scholar 

  42. R. F. Hotz: Appl. Opt, 12, 1834 (1973)

    Article  ADS  Google Scholar 

  43. G. Benedetti-Michelangeli, S. Martelluci: Appl. Opt. 8, 1447 (1969)

    Article  ADS  Google Scholar 

  44. T. J. Gleason, J. S. Kruger, R. M. Curnutt: Appl. Opt. 12, 2942 (1973)

    Article  ADS  Google Scholar 

  45. a W. Rundle, Korad Division, Hadron, Inc., unpublished results.

    Google Scholar 

  46. 44b E. A. Teppo: Nd:YAG Laser Technology, NWC Techn. Memo 2534 Appendix C (1975)

    Google Scholar 

  47. E. A. Teppo: Techn. Note 4051–2 (1972). Naval Weapons Center, China Lake, Calif.

    Google Scholar 

  48. J. D. Foster, R. F. Kirk: Report NASA-CR-1771, NASA, Washington, D.C. (1971)

    Google Scholar 

  49. R. A. Kaplan: Conductive cooling of a ruby rod, Technical Note No. 109, TRG, Melville, N.Y. (1964)

    Google Scholar 

  50. M. M. Heil, D. L. Flannery: A review of axial gradient laser technology, Proc. DOD Conference, San Diego, Calif. (1970), p. 287

    Google Scholar 

  51. W. F. Hagen: Technical Report AFAL-TR-73–111, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1973)

    Google Scholar 

  52. W. F. Hagen, C. G. Young, J. Keefe, D. W. Cuff: Segmented Nd:glass lasers, Proc. DOD Conference, San Diego, Calif. (1970), p. 363

    Google Scholar 

  53. E. Matovich, G. E. Meyers: 1 KW axial gradient Nd:YAG laser, Final Report N00014–70-C-0406, ONR, Boston (1971)

    Google Scholar 

  54. E. Matovich: Segmented ruby oscillator-amplifier, Report AFALTR-69–317, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1970)

    Google Scholar 

  55. W. B. Jones, L. M. Goldman, J. P. Chernoch, W. S. Martin: IEEE J. Quant. Electr. QE-8, 534 (1972)

    Google Scholar 

  56. J. P. Chernoch, W. S. Martin, J. C. Almasi: Performance characteristics of a face-pumped, face-cooled laser, the mini-FPL, Technical Report AFAL-TR-71–3, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1971)

    Google Scholar 

  57. J. P. Chernoch: High power Nd: YAG Mini-FPL, Final report AFALTR-75–93, Air Forcp Avionics Lab., WPAFB, Ohio (1975)

    Google Scholar 

  58. G. J. Hulme, W. B. Jones: Total internal reflection face pumped laser, Proc. Soc. Photo-Optical Instr. Eng. 69, 38 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koechner, W. (1976). Heat removal. In: Solid-State Laser Engineering. Springer Series in Optical Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-8519-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-8519-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-8521-0

  • Online ISBN: 978-1-4757-8519-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics