Skip to main content

Optical resonator

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 1))

Abstract

The light emitted by most lasers contains several discrete optical frequencies, separated from each other by frequency differences which can be associated with different modes of the optical resonator. It is common practice to distinguish two types of resonator modes, “Longitudinal” modes differ from one another only in their oscillation frequency; “transverse” modes differ from one another not only in their oscillation frequency, but also in their field distribution in a plane perpendicular to the direction of propagation. Corresponding to a given transverse mode are a number of longitudinal modes which have the same field distribution as the given transverse mode but which differ in frequency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961)

    Google Scholar 

  2. G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961)

    Google Scholar 

  3. G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962)

    Google Scholar 

  4. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1066)

    Article  ADS  Google Scholar 

  5. H. Kogelnik, Lasers, 1, ed. A. K. Levine ( Marcel Dekker, New York, 1966 ), pp. 295–347

    Google Scholar 

  6. H. K. V. Lotsch, Optik 28,65, 328, 555 (1968/1969)

    Google Scholar 

  7. H. K. V. Lotsch, Optik 29, 130, 622 (1969)

    Google Scholar 

  8. H. K. V. Lotsch, 30, 1, 181, 217, 563 (1969)

    Google Scholar 

  9. G. Goubau, F. Schwering, IRE Trans. Ant. and Prop. AP-9, 248 (1961)

    Google Scholar 

  10. J. R. Pierce, Proc. Nat’l Acad. Sci. 47, 1808 (1961)

    Article  ADS  Google Scholar 

  11. L. A. Vainshtein, JETP 44, 1050 (1963)

    Google Scholar 

  12. L. A. Vainshtein, JETP 17, 709 (1963)

    Google Scholar 

  13. D. E. McCumber, Bell Syst. Tech. J. 44, 333 (1965)

    Google Scholar 

  14. R. J. Freiberg, A. S. Halsted, Appl. Opt. 8, 355 (1969)

    Article  ADS  Google Scholar 

  15. B. A. See, Laser resonators, properties of laser beams and design of optical systems, N68–16910, Weapons Research Establishment, Salisbury, South Australia (1967)

    Google Scholar 

  16. J. S. Kruger, Beam divergence for various transverse laser modes, Report AD-729–299, Harry Diamond Lab., Washington, D.C. (1971)

    Google Scholar 

  17. J. S. Kruger, Electro-Opt. Syst. Designs 12, (September 1972)

    Google Scholar 

  18. G. L. McAllister, M. M. Mann, L. G. DeShazer, Transverse mode distortion in giant-pulse laser oscillators, IEEE Conf. Laser Eng. & Applications, Washington, D.C. (1969)

    Google Scholar 

  19. A. G. Fox, T. Li, IEEE J. Quant. Electr. QE-2, 774 (1966) 5.16 H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965)

    Google Scholar 

  20. J. Steffen, J. P. Lortscher, G. Herziger, IEEE J. Quant. Electr. QE-8, 239 (1972)

    Google Scholar 

  21. D. R. Whitehouse, C. F. Luck, C. VanMertens, F. A. Horrigan, M. Bass, Mode control technology for high performance solid state lasers, Report TR ECOM-0269-F, US Army Electr. Command, Fort Monmouth, N.J. (1973)

    Google Scholar 

  22. T. J. Gleason, Analysis of complex laser cavities, Report HDL-TM71–5, Harry Diamond Lab., Washington, D.C. (1971)

    Google Scholar 

  23. D. C. Hanna, IEEE J. Quant. Electr. QE-5, 483 (1969)

    Google Scholar 

  24. H. W. Kogelnik, IEEE J. Quant. Electr. QE-8, 373 (1972)

    Google Scholar 

  25. R. B. Chesler, D. Maydan, J. Appl. Phys. 43, 2254 (1972)

    Article  Google Scholar 

  26. A. L. Bloom, Properties of laser resonators giving uniphase wave fronts, Tech. Bulletin No. 7, Spectra Physics, Mountain View, Calif. (1963)

    Google Scholar 

  27. R. J. Freiberg, A. S. Halsted, Appl. Opt. 8, 355 (1969)

    Article  ADS  Google Scholar 

  28. I. M. Belousova, O. B. Danilov, Soy. Phys. 12, 1104 (1968)

    Google Scholar 

  29. E. A. Teppo, Nd:YAG laser laboratory experiments, Tech. Note 4051–2 (February 1972)

    Google Scholar 

  30. E. A. Teppo, Tech. Note 4051–7 (August 1973), Naval Weapons Center, China Lake, Calif.

    Google Scholar 

  31. T. Li, Bell Syst. Tech. J. 44, 917 (1965)

    Google Scholar 

  32. L. W. Davis, J. Appl. Phys. 39, 5331 (1968)

    Article  ADS  Google Scholar 

  33. J. E. Geusic, H. J. Levingstein, S. Singh, R. C. Smith, L. G. VanUitert, Appl. Phys. Letters 12, 306 (1968)

    Article  ADS  Google Scholar 

  34. L. M. Osterink, J. D. Foster, Appl. Phys. Letters 12, 128 (1968)

    Article  ADS  Google Scholar 

  35. W. C. Fricke, Appl. Opt. 9, 2045 (1970)

    Article  ADS  Google Scholar 

  36. F. A. Levine, IEEE J. Quant. Electr. QE-7, 170 (1971)

    Google Scholar 

  37. W. C. Scott, M. DeWit, Appl. Phys. Letters 18, 3 (1971)

    Article  ADS  Google Scholar 

  38. A. E. Siegman, Proc. IEEE 53, 277 (1965); also Appl. Opt. 13, 353 (1974)

    Article  ADS  Google Scholar 

  39. W. F. Krupke, W. R. Sooy, IEEE J. Quant. Electr. QE-5, 575 (1969)

    Google Scholar 

  40. R. J. Freiberg, P. P. Chenausky, C. J. Buczek, IEEE J. Quant. Electr. QE-8, 882 (1972)

    Google Scholar 

  41. A. N. Chester, IEEE J. Quant. Electr. QE-9, 209 (1973)

    Google Scholar 

  42. Yu. A. Ananev, N. A. Sventsitskaya, V. E. Sherstobitov, Soy. Phys.Doklady 13, 351 (1968)

    ADS  Google Scholar 

  43. L. G. DeShazer, E. A. Maunders, Appl. Opt. 6, 431 (1967)

    Article  ADS  Google Scholar 

  44. H. K. V. Lotsch, Japan J. Appl. Phys. 4, 435 (1965)

    Article  ADS  Google Scholar 

  45. Data Sheet cw Nd:YAG lasers, Model KY5, Hadron, Inc., Korad Div. Santa Monica, Calif.

    Google Scholar 

  46. W. Rundle, Hadron, Inc., Korad Div., private communication

    Google Scholar 

  47. W. F. Hagen, J. Appl. Phys. 40, 511 (1969)

    Article  ADS  Google Scholar 

  48. M. Born, E. Wolf, Principles of Optics ( Pergamon Press, New York, 1964 )

    Google Scholar 

  49. F. A. Jenkins, H. E. White, Fundamentals of Optics ( McGraw-Hill Book Company, New York, 1957 )

    MATH  Google Scholar 

  50. V. Met, Microwaves 12 (September 1967)

    Google Scholar 

  51. J. K. Watts, Appl. Opt. 7, 1621 (1968)

    Article  ADS  Google Scholar 

  52. M. Hercher, Appl. Opt. 8, 1103 (1969)

    Article  ADS  Google Scholar 

  53. B. L. Booth, S. M. Jarrett, G. C. Barker, Appl. Opt. 9, 107 (1970)

    Article  ADS  Google Scholar 

  54. R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography ( Academic Press, New York, 1971 )

    Google Scholar 

  55. L. D. Siebert, Appl. Opt. 10, 632 (1971)

    Article  ADS  Google Scholar 

  56. S. A. Collins, G. R. White, Appl. Opt. 2, 448 (1963)

    Article  Google Scholar 

  57. D. A. Kleinman, P. P. Kisliuk, Bell Syst. Tech. J. 41, 453 (1962)

    Google Scholar 

  58. H. K. V. Lotsch, A modified Fabry–Perot interferometer as a discrimination filter and a modulator for longitudinal modes, Scientific Report No. 2, U.S. Air Force Contract AFI9(604)-8052(1962)

    Google Scholar 

  59. P. W. Smith, Proc. IEEE 60, 422 (1972)

    Article  Google Scholar 

  60. G. Magyar, Opt. Techn. 231 (November 1969)

    Google Scholar 

  61. M. Hercher, Appl. Phys. Letters 7, 39 (1965)

    Article  ADS  Google Scholar 

  62. D. G. Peterson, A. Yariv, Appl. Opt. 5, 985 (1966)

    Article  ADS  Google Scholar 

  63. R. M. Schotland, Appl. Opt. 9, 1211 (1970)

    Article  ADS  Google Scholar 

  64. M. Daehler, G. A. Sawyer, E. L. Zimmermann, J. Appl. Phys. 38, 1980 (1967)

    Article  ADS  Google Scholar 

  65. G. Magyar, Rev. Sci. Instr. 38, 517 (1967)

    Article  ADS  Google Scholar 

  66. M. M. Johnson, A. H. LaGrone, Appl. Opt. 12, 510 (1973)

    Article  ADS  Google Scholar 

  67. W. B. Tiffany Appl. Opt. 7, 67 (1968)

    Article  ADS  Google Scholar 

  68. F. J. McClung, D. Weiner, IEEE J. Quant. Electr. QE-1, 94 (1965)

    Google Scholar 

  69. E. Gregor, Hadron, Inc., Korad Div., private communication

    Google Scholar 

  70. W. Wiesemann, Appl. Opt. 12, 2909 (1973)

    Article  ADS  Google Scholar 

  71. E. Snitzer, Appl. Opt. 5, 121 (1966)

    Article  ADS  Google Scholar 

  72. N. M. Galaktionova, G. A. Garkavi, V. F. Egorova, A. A. Mak, V. A. Fromzel, Opt. Spectrosc. 28, 404 (1970)

    Google Scholar 

  73. W. Culshaw, J. Kannelaud, IEEE J. Quant. Electr. QE-8, 381 (1971)

    Google Scholar 

  74. W. Culshaw, J. Kannelaud, J. E. Peterson, IEEE J. Quant. Electr. QE-10, 253 (1974)

    Google Scholar 

  75. M. G. Danielmeyer, W. N. Leibolt, Appl. Phys. 3, 193 (1974)

    Article  ADS  Google Scholar 

  76. D. Röss, Appl. Phys. Letters 8, 109 (1966)

    Article  ADS  Google Scholar 

  77. 73 M. P. Vanyukov, V. I. Isaenko, L. A. Luizova, A. Shorokhov, Opt. Spectrosc. 20, 535 (1966)

    ADS  Google Scholar 

  78. H. G. Danielmeyer, IEEE J. Quant. Electr. QE-6, 101 (1970)

    Google Scholar 

  79. R. Carman, Semi-annual Report, 27 (1972), Lawrence Lab., Livermore, Calif.

    Google Scholar 

  80. B. H. Soffer, J. Appl. Phys. 35, 2551 (1964)

    ADS  Google Scholar 

  81. B. B. McFarland, R. H. Hoskins, B. H. Soffer, Nature 207, 1180 (1965)

    Article  ADS  Google Scholar 

  82. J. E. Bjorkholm, R. H. Stolen, J. Appl. Phys. 39, 4043 (1968)

    Article  ADS  Google Scholar 

  83. K. Yoshino, K. Kawabe, Y. Inuiski, Japan J. Appl. Phys. 8, 1168 (1969)

    Article  ADS  Google Scholar 

  84. R. F. Wuerker, S.P.LE. J. 9, 122 (1971)

    Google Scholar 

  85. W. R. Sooy, Appl. Phys. Letters 7, 36 (1965)

    Article  ADS  Google Scholar 

  86. V. Daneu, C. A. Sacchi, O. Svelto, IEEE J. Quant. Electr. QE-2, 290 (1966)

    Google Scholar 

  87. D. C. Hanna, Electr. Letters 8, 369 (1972)

    Article  ADS  Google Scholar 

  88. D. C. Hanna, Opto-Electro. 3, 163 (1971)

    Article  Google Scholar 

  89. D. C. Hanna, Opto-Electro. 4, 249 (1972)

    Article  Google Scholar 

  90. A. R. Clobes, M. J. Brionza, Appl. Phys. Letters 21, 265 (1972)

    Article  ADS  Google Scholar 

  91. D. A. Draegert, IEEE J. Quant. Electr. QE-8, 235 (1972)

    Google Scholar 

  92. H. G. Danielmeyer, Appl. Phys. Letters 17, 519 (1970)

    Article  ADS  Google Scholar 

  93. H. G. Danielmeyer, Appl. Phys. Letters 16, 124 (1970)

    Article  ADS  Google Scholar 

  94. F. J. McClung, Appl. Opt. 9, 103 (1970)

    Article  ADS  Google Scholar 

  95. W. Koechner, IEEE J. Quant. Electr. QE-8, 656 (1972)

    Google Scholar 

  96. R. B. Chesler, Appl. Opt. 9, 2190 (1970)

    Article  ADS  Google Scholar 

  97. G. D. Baldwin, IEEE J. Quant. Electr. QE-7, 179 (1971)

    Google Scholar 

  98. J. F. Nester, IEEE J. Quant. Electr. QE-6, 97 (1970)

    Google Scholar 

  99. T. Kimura, IEEE J. Quant. Electr. QE-6, 764 (1970)

    Google Scholar 

  100. H. G. Danielmeyer, J. Appl. Phys. 41, 4014 (1970)

    Article  ADS  Google Scholar 

  101. H. Nagai, IEEE J. Quant. Electr. QE-8, 857 (1972)

    Google Scholar 

  102. H. G. Danielmeyer, IEEE J. Quant. Electr. QE.6, 101 (1970)

    Google Scholar 

  103. G. R. Hanes, B. P. Stoicheff, Nature 195, 587 (1962)

    Article  ADS  Google Scholar 

  104. A. P. Veduta, A. M. Leontovich, V. N. Smorchkov, Soy. Phys.JETP 21, 59 (1965)

    ADS  Google Scholar 

  105. T. P. Hughes, K. M. Young, Nature 196, 332 (1962)

    Article  ADS  Google Scholar 

  106. D. J. Bradley, G. Magyar, M. C. Richardson, Nature 212, 63 (1966)

    Article  ADS  Google Scholar 

  107. D. A. Berkley, G. J. Wolga, J. Appl. Phys. 38, 3231 (1967)

    Article  ADS  Google Scholar 

  108. A. Flamholz, G. J. Wolga, J. Appl. Phys. 39, 2723 (1968)

    Article  ADS  Google Scholar 

  109. D. J. Bradley, M. S. Engwell, A. W. McCullough, G. Magyar, M. C. Richardson, Appl. Phys. Letters 9, 150 (1966)

    Article  ADS  Google Scholar 

  110. D. J. Bradley, M. S. Engwell, A. W. McCullough, Phil. Trans. Roy. Soc. Series A, 263, 225 (1968)

    Google Scholar 

  111. D. Pohl, Appl. Phys. Letters 26A, 357 (1968)

    Article  Google Scholar 

  112. E. Ritter, Optical coatings and thin-film techniques, Laser Handbook, ed. F. T. Arrechi, E. O. Schulz-DuBois ( North Holland, Amsterdam, 1972 ), pp. 897–921

    Google Scholar 

  113. P. Baumeister, Handbook of Optical Design (U.S. Government Printing Office, Washington, D.C., Section 20, 1963 )

    Google Scholar 

  114. D. S. Heavens, Optical Properties of Thin Solid Films ( Butterworth Scientific Publications, London, 1955 )

    Google Scholar 

  115. H. A. Macleod, Thinfilm Optical Filters ( Adam Hilger, London, 1969 )

    Google Scholar 

  116. A. Vasicek, Optics of Thin Films ( North Holland, Amsterdam, 1960 )

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koechner, W. (1976). Optical resonator. In: Solid-State Laser Engineering. Springer Series in Optical Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-8519-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-8519-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-8521-0

  • Online ISBN: 978-1-4757-8519-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics