Laser amplifier

  • Walter Koechner
Part of the Springer Series in Optical Sciences book series (SSOS, volume 1)


In this chapter we will discuss the gain in energy for a light beam making a single pass through an optically active material. The use of lasers as pulse amplifiers is of great interest in the design of high-energy, high-brightness light sources. The generation of high-energy pulses is based on the combination of a master oscillator and multistage power amplifier. For the purpose of illustrating the amplifier concept and principles we assume a straightforward system, as shown in Figure 4.1. In this scheme an amplifier is driven by an oscillator which generates an initial light pulse of moderate power and energy. In the power amplifier with a large volume of active material the pulse power can grow, in extreme cases, up to 100 times.


Gain Coefficient Gain Saturation Laser Amplifier Input Energy Density Pump Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    L. M. Frantz, J. S. Nodvik: J. Appl. Phys. 34, 2346 (1963)ADSCrossRefGoogle Scholar
  2. 4.2
    R. Bellman, G. Birnbaum, W. G. Wagner: J. Appl. Phys. 34, 780 (1963)ADSCrossRefGoogle Scholar
  3. 4.3
    E. L. Steele: J. Appl. Phys. 36, 348 (1965)ADSCrossRefGoogle Scholar
  4. 4.4
    E. L. Steele: Optical Lasers in Electronics ( John Wiley & Sons, New York, 1968 )Google Scholar
  5. 4.5
    P. G. Kriukov, V. S. Letokhov: Laser Handbook 1, eds., E. T. Arecchi, E. O. Schulz-DuBois ( North-Holland, Amsterdam, 1972 ), pp. 561–595Google Scholar
  6. 4.6
    P. V. Avizonis, R. L. Grotbeck: J. Appl. Phys. 37, 687 (1966)ADSCrossRefGoogle Scholar
  7. 4.7
    C. R. Jones, P. V. Avizonis, P. Sivgals: Experimental Investigation of the Behavior of Neodymium-Glass Laser Amplifiers, NBS Spec. Pub. 341, 28 (1970)Google Scholar
  8. 4.8
    J. M. McMahon: Glass Laser Material Testing at Naval Research Laboratory, ASTM Report on Damage in. Laser Glass STP-469, 117 (1969)Google Scholar
  9. 4.9
    I. F. Balashov, V. A. Berenberg, V. V. Blagoveshchenskii: Soy. Phys. 14, 692 (1965)Google Scholar
  10. 4.10
    M. Michon, R. Auffret, R. Dumanchin: J. Appl. Phys. 41, 2739 (1970)ADSCrossRefGoogle Scholar
  11. 4.11
    J. E. Geusic, H. E. D. Scovil: Quantum Electronics 3 (Columbia University Press, New York, 1964 ), pp. 1211–1220Google Scholar
  12. 4.
    W. R. Sooy, R. S. Congleton, B. E. Dobratz, W. K. Ng: Quantum Electronics 3 (Columbia University Press, New York, 1964), pp. 1103–1112Google Scholar
  13. 4.13
    J. I. Davis, W. R. Sooy: Appl. Opt. 3, 715 (1964)ADSCrossRefGoogle Scholar
  14. 4.14
    R. Carman: Laser Fusion Program, Semiannual Report UCRL50021–73–1, Lawrence Livermore Lab., Livermore, Calif. 154 (January—June 1973 )Google Scholar
  15. 4.15
    P. C. Magnante: IEEE J. Quant. Electr. QE-8, 440 (1972)Google Scholar
  16. 4.16
    N. G. Basov: Soy. Phys. JETP 33, 289 (1971)ADSGoogle Scholar
  17. 4.17
    A. Penzkofer, W. Kaiser: Appl. Phys. Letters 21, 427 (1972)ADSCrossRefGoogle Scholar
  18. 4.18
    C. C. Young, J. W. Kantorski: Optical Gain and Inversion in Nd:glass Lasers, Proc. 1st DOD Conf. on Laser Technology, 75 (1964)Google Scholar
  19. 4.19
    R. W. Beck: Damage Threshold Studies of Glass Laser Materials, Ownes-Illinois, Tech. Report ARPA, Contract DAHC15–69-C-0303 (January 1970)Google Scholar
  20. 4.20
    T. G. Crow, T. J. Snyder: Techniques for Achieving High Power Q-Switched Operation in YAG:Nd, Final Tech. Report AFAL-TR70–69, Air Force, WPAFB (1970); also Laser Journal, 18 (November/ December 1970 )Google Scholar
  21. 2la N. P. Barnes, V. J. Corcoran, I. A. Crabbe, L. L. Harper, R. W. Williams, J. W. Wragg: IEEE J. Quant. Electr. QE-10, 195 (1974)Google Scholar
  22. 21b E. A. Teppo: Nd: YAG Laser Technology, NWC Technical Memo 2534, Naval Weapons Center, China Lake, Calif. 193 (Aug. 1975)Google Scholar
  23. 4.22
    W. W. Rigrod: J. Appl. Phys. 34, 2602 (1963)ADSCrossRefGoogle Scholar
  24. 4.23
    E. O. Schulz-DuBois: Bell Systems Technical J., 625 (1964)Google Scholar
  25. 4.24
    A. Y. Cabezas, R. P. Treat: J. Appl. Phys. 37, 3556 (1966)ADSCrossRefGoogle Scholar
  26. 4.25
    A. Y. Cabezas, G. L. McAllister, W. K. Ng: J. Appl. Phys. 38, 3487 (1967)ADSCrossRefGoogle Scholar
  27. 4.26
    A. Bettinger, L. Jacob, C. Meunier, J. Pezot: Uniform Energy Density at the Output of the High Power Glass Lasers, CLEA Conference, Washington, D.C. (June 1973)Google Scholar
  28. 4.27
    W. B. Bridges: IEEE J. Quant. Electr. QE-4, 820 (1968)Google Scholar
  29. 4.28
    J. P. Campbell, L. G. DeShazer: J. Opt. Soc. Am. 59, 1427 (1969)ADSCrossRefGoogle Scholar
  30. 4.29
    T. Trenholme: A User Oriented Axially Symmetric Diffraction Code, Semiannual Report UCRL–50021–73–1, Lawrence Livermore Lab., Livermore, Calif., 46 (January—June 1973 )Google Scholar
  31. 4.30
    H. J. Weaver: Effect of Optical Systems on Diffraction, Report SSL73–333, Lawrence Livermore Lab., Livermore, Calif. (1973)Google Scholar
  32. 4.31
    S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov: Laser Handbook 2, eds. E. T. Arecchi, E. O. Schulz-DuBois ( North Holland, Amsterdam, 1972 ) pp. 1151–1228Google Scholar
  33. 4.32
    R. Y. Chiao, E. Garmire, C. H. Townes: Phys. Rev. Letters 13, 479 (1964)ADSCrossRefGoogle Scholar
  34. 4.33
    V. I. Bespalov, V. I. Talanov: JETP Letters 3, 307 (1966)ADSGoogle Scholar
  35. 4.34
    J. Trenholme: Review of small signal theory. Laser Program Annual Report UCRL-50021–74, Lawrence Livermore Lab., Livermore, Calif. 178 (1974)Google Scholar
  36. 4.35
    E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass: Appl. Phys. Letters 25, 448 (1974)ADSCrossRefGoogle Scholar
  37. 4.36
    M. A. Duguay, L. E. Hargrove, K. B. Jefferts: Appl. Phys. Letters 9, 287 (1966)ADSCrossRefGoogle Scholar
  38. 4.37
    F. Shimizu: Phys. Rev. Letters 19, 1097 (1967)ADSCrossRefGoogle Scholar
  39. 4.38
    R. J. Joenk: Phys. Letters 24A, 228 (1967)ADSCrossRefGoogle Scholar
  40. 4.39
    F. DeMartini, C. H. Townes, T. K. Gustafson, P. L. Kelley: Phys. Rev. 164, 312 (1967)ADSCrossRefGoogle Scholar
  41. 4.40
    M. A. Duguay, J. W. Hansen, S. L. Shapiro: IEEE J. Quant. Electr. QE-6, 725 (1970)Google Scholar
  42. 4.41
    R. A. Fisher: Picosecond Optical Pulse Nonlinear Propagation Effects, Ph.D. thesis, University of California, Berkeley, Calif. (1971)Google Scholar
  43. 4.42
    J. A. Fleck: J. Appl. Phys. 36, 1301 (1965)ADSCrossRefGoogle Scholar
  44. 4.43
    P. V. Avizonis, W. R. Willoughby: J. Appl. Phys. 37, 682 (1966)ADSCrossRefGoogle Scholar
  45. 4.44
    G. J. Linford, L. W. Hill: Appl. Opt., 13, 1387 (1974)ADSCrossRefGoogle Scholar
  46. 4.45
    A. A. Mak, B. G. Malinin, V. A. Novikov, D. S. Prilezhaev, A. I. Stepanov, V. I. Ustyugov: Soy. Phys. 14, 1418 (1970)Google Scholar
  47. 4.46
    Y. A. Anan’ev, I. F. Balashov, A. A. Mak: Soy. Phys. 11, 124 (1966)Google Scholar
  48. 4.47
    L. Tonks: J. Appl. Phys. 35, 1134 (1964)ADSCrossRefGoogle Scholar
  49. 4.48
    C. G. Young: Proc. IEEE 53, 1267 (1965)CrossRefGoogle Scholar
  50. 4.49
    J. A. Glaze, S. Guch, J. B. Trenholme: Appl. Opt. 13, 2808 (1974)ADSCrossRefGoogle Scholar
  51. 4.50
    J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme: IEEE J. Quant. Electr. QE-9, 992 (1973)Google Scholar
  52. 4.51
    D. C. Brown: Appl. Opt. 12, 2215 (1973)ADSCrossRefGoogle Scholar
  53. 4.52
    G. Dubé, N. L. Boling: Appl. Opt. 13, 699 (1974)ADSCrossRefGoogle Scholar
  54. 4.53
    J. B. Trenholme: Fluorescence Amplification and Parasitic Oscillation Limitations in Discs Lasers, Memorandum Report 2480, NRL, Washington, D.C. (1972)Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Walter Koechner
    • 1
  1. 1.Korad Division of Hadron, Inc.Santa MonicaUSA

Personalised recommendations