Interpretation of the Spectrum of Ice and Water in the Valence- and Deformation-Vibration Regions

  • B. A. Mikhailov
  • V. M. Zolotarev


Use of infrared spectroscopy for quantitative studies in the fundamental-vibration regions for H2O molecules in the condensed phase is hampered by the fact that specimens with a thickness of about 1 μ must be prepared and that the interference within the layer, as well as the selective reflection, must be taken into account. Raman spectroscopy is therefore generally employed to study the vibration spectra of ice, water, and aqueous solutions. However, the deflected total internal reflection (DTIR) method [1–4], makes it possible to overcome a major portion of the difficulties inherent in infrared absorption spectroscopy. Using this technique, we were able to obtain high-contrast spectra for H2O, D2O,and HDO and to calculate their optical constants.


Frequency Ratio Optical Constant Deformation Band Heavy Water Symmetric Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Fahrenfort and W. M. Visser, Spectrochim. Acta, 18: 1103 (1962).Google Scholar
  2. 2.
    W. J. Harrik, J. Chem. Phys., 64: 1110 (1960).CrossRefGoogle Scholar
  3. 3.
    V. M. Zolotarev and L. D. Kislovskii, Opt. i Spektr., 19: 623 (1965).Google Scholar
  4. 4.
    V. M. Zolotarev and L. D. Kislovskii, Pribory i Tekhn. Fcperim., No. 5, p. 175 (1964).Google Scholar
  5. 5.
    V. M. Zolotarev, Dokl. Akad. Nauk SSSR, 170: 317 (1966).Google Scholar
  6. 6.
    M. J. Taylor and E. Wallei, J. Chem. Phys., 40: 1660 (1964).CrossRefGoogle Scholar
  7. 7.
    Z. A. Gabrichidze, this volume, p. 19.Google Scholar
  8. 8.
    Yu. V. Gurikov, ibid., p. 103Google Scholar
  9. 9.
    V. M. Zolotarev, Opt. i Spektr., 23: 816 (1967).Google Scholar
  10. 10.
    A. N. Sidorov, Opt. i Spektr., 8: 51 (1960).Google Scholar
  11. 11.
    T. D. Wall and D. F. Hornig, J. Chem. Phys., 43: 2079 (1965).CrossRefGoogle Scholar
  12. 12.
    N. Bjerrum, Dan. Mat. Fys. Medd., Vol. 27, No. 1 (1951).Google Scholar
  13. 13.
    K. Nakamoto and M. Margoshes, J. Amer. Chem. Soc., 77: 6480 (1955).CrossRefGoogle Scholar
  14. 14.
    W. Ockman, Adv. Phys., 7: 199 (1958).CrossRefGoogle Scholar
  15. 15.
    M. D. Danford and H. A. Levy, J. Amer. Chem. Soc., 84.: 3965 (1962).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Gurikov, Zh. Strukt. Khim., 9: 944 (1968).Google Scholar
  17. 17.
    Yu. V. Gurikov, Zh. Strukt. Khim., 4: 824 (1963).Google Scholar
  18. 18.
    V. M. Zolotarev, V. A. Karinskii, and Yu. D. Pushkin, Opt. Mekh. Prom., 8: 24 (1966).Google Scholar
  19. 19.
    V. M. Zolotarev, Candidate’s Dissertation, GOI, Leningrad (1965).Google Scholar
  20. 20.
    V. M. Zolotarev, Zh. Strukt. Khim., 5: 1 (1966).Google Scholar
  21. 21.
    V. M. Chulanovskii, Dokl. Akad. Nauk SSSR, 93: 25 (1953).Google Scholar
  22. 22.
    V. I. Val’kov and G. A. Maslenkova, Vestn. Leningr. Gos. Univ., No. 22 (1957).Google Scholar
  23. 23.
    L. D. Kislovskii, Opt. i Spektr., 7: 315 (1959).Google Scholar
  24. 24.
    J. Fox and A. Martin, Proc. Roy. Soc., 174: 234 (1940).CrossRefGoogle Scholar
  25. 25.
    A. V. Petrov, Candidate’s Dissertation [in Russian], Inst. Geokhim. i Anal. Khim., Moscow (1965).Google Scholar
  26. 26.
    G. E. Walrafen, J. Chem. Phys., 47: 114 (1967).CrossRefGoogle Scholar
  27. 27.
    Yu. N. Neronov. Zh. Strukt. Khim., 8: 999 (1967).Google Scholar
  28. 28.
    G. C. Pimentel and O. McClellan, The Hydrogen Bond [Russian translation], Mir (1964), p. 107.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • B. A. Mikhailov
  • V. M. Zolotarev

There are no affiliations available

Personalised recommendations