Concentration Fluctuations and Their Influence on Sound Absorption

  • V. P. Romanov
  • V. A. Solov’ev

Abstract

Maxima are usually observed in the curves representing ultrasound absorption as a function of concentration for mixtures of associated liquids, particularly aqueous solutions of substances with polar molecules [1]. They are due to relaxation processes caused by molecular association. A qualitative interpretation of this type was proposed by Bazhulin and Merson [2] in 1938. Attempts at a quantitative calculation of the additional absorption caused by association have been made on the basis of the quasi-chemical model, treating the associates as molecules of strictly defined stoichiometric composition [2–5]. This theory is a good approximation if saturated bonds are formed between the molecules. It can be used only for very rough estimates if the composition of the associate has not been unambiguously determined, and detailed conclusions drawn from it are totally invalid.

Keywords

Sound Absorption Concentration Fluctuation Average Fluctuation Volume Viscosity Correlational Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. Sette, Handbuch der Physik, Vol. 11, Pt. 1, Berlin-Göttingen-Heidelberg (1961), pp.275–359.Google Scholar
  2. 2.
    P. A. Bazhulin and Yu. M. Merson, Dokl. Akad. Nauk SSSR, 24: 689 (1939).Google Scholar
  3. 3.
    R. S. Musa and M. Eisner,J. Chem. Phys., 30: 227 (1959).CrossRefGoogle Scholar
  4. 4.
    R. N. Barfield and W.G. Scheider, J. Chem. Phys., 31: 488 (1959).CrossRefGoogle Scholar
  5. 5.
    O. Nomoto, J. Phys. Soc. Japan, 11:827 (1956).CrossRefGoogle Scholar
  6. O. Nomoto, J. Phys. Soc. Japan, 12: 300 (1957).CrossRefGoogle Scholar
  7. 6.
    M. F. Vuks and L. I. Lisnayanskii, Ukr. Fiz. Zh., 1: 778 (1962).Google Scholar
  8. 7.
    L.I. Lisnyanskii, Dissertation, Leningrad University (1962).Google Scholar
  9. 8.
    M. Fixman, J. Chem. Phys., 33: 1357 (1961).CrossRefGoogle Scholar
  10. 9.
    M. Fixman, J. Chem. Phys., 33: 1363 (1961).CrossRefGoogle Scholar
  11. 10.
    V. P. Romanov and V.A. Solov’ev, Akust. Zh., 11: 84 (1965).Google Scholar
  12. 11.
    M. A. Leontovich, Statistical Physics, GTTI (1944).Google Scholar
  13. 12.
    L. D. Landau and E. M. Lifshits, Statistical Physics, GTTI (1951)Google Scholar
  14. 13.
    P. Debye, J. Chem. Phys., 31: 680 (1959).CrossRefGoogle Scholar
  15. 14.
    M. A. Leontovich, Introduction to Thermodynamics, OGIZ (1951)Google Scholar
  16. 15.
    N. N. Bogolyubov, Dynamic-Theory Problems in Statistical Physics, OGIZ (1946).Google Scholar
  17. 16.
    I. Z. Fisher, Statistical Theory of Liquids, (1961).Google Scholar
  18. 17.
    V. P. Romanov and V. A. Solov’ev, Ukr. Fiz. Zh. (in press) (1966).Google Scholar
  19. 18.
    A. Munster, in: Thermodynamics of Irreversible Processes [Russian Translation], Izd. Inostr. Lit., Moscow (1962), pp. 36–145.Google Scholar
  20. 19.
    M. Fixman, J. Chem. Phys., 36: 1965 (1962).CrossRefGoogle Scholar
  21. 20.
    I. Z. Fisher, Ukr. Fiz. Zh., 9: 379 (1964)Google Scholar
  22. 21.
    I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Principles of Molecular Acoustics, Nauka, Moscow (1964)Google Scholar
  23. 22.
    V. P. Romanov and V. A. Solov’ev, Akust. Zh., 11: 219 (1965).Google Scholar
  24. 23.
    V. V. Vladimirskii, Zh. Éksperim. Teor. Fiz., 9: 1226 (1939).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • V. P. Romanov
  • V. A. Solov’ev

There are no affiliations available

Personalised recommendations