Physiological and Anatomical Changes That Result from Optical and Motor Deficits

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)


Our understanding of what happens in various forms of visual deprivation has increased enormously over the last 35 years, as a result of experiments with animals. The seminal experiments were done by David Hubel and Torsten Wiesel in the early 1960s. They were awarded the Nobel prize in 1981 for this work (Wiesel, 1982), and for their work on the organization of the visual system in normal animals.


Visual Cortex Contrast Sensitivity Lateral Geniculate Nucleus Striate Cortex Ocular Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blakemore, C., and Cooper, G. F., 1970, Development of the brain depends on the visual environment, Nature 228:477–478.PubMedCrossRefGoogle Scholar
  2. Blakemore, C., and Van Sluyters, R. C., 1974, Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period, J. Physiol. (London) 237:195–216.Google Scholar
  3. Chino, Y. M., Cheng, H., Smith, E. L., Garraghty, P. E., Roe, A. W., and Sur, M., 1994, Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus, Proc. Natl. Acad. Sci. USA 91:6938–6942.PubMedCrossRefGoogle Scholar
  4. Crawford, M. L. J., Smith, E. L., Harwerth, R. S., and von Noorden, G. K., 1984, Stereoblind monkeys have few binocular neurons, Invest. Ophthalmol. Vis. Sci. 25:779–781.PubMedGoogle Scholar
  5. Crewther, D. P., and Crewther, S. G., 1990, Neural site of strabismic amblyopia in cats: Spatial frequency deficit in primary cortical neurons, Exp. Brain Res. 79:615–622.PubMedCrossRefGoogle Scholar
  6. Crewther, S. G., and Crewther, D. P., 1993, Amblyopia and suppression in binocular cortical neurones of strabismic cat, Neurosci. Res. 4:1083–1086.Google Scholar
  7. Crewther, S. G., Crewther, D. P., and Cleland, B. G., 1985, Convergent strabismic amblyopia in cats, Exp. Brain Res. 60:1–9.PubMedCrossRefGoogle Scholar
  8. Cynader, M. S., Berman, N., and Hein, A., 1975, Cats raised in a one-directional world: Effects on receptive fields in visual cortex and superior colliculus, Exp. Brain Res. 22:267–280.PubMedCrossRefGoogle Scholar
  9. Cynader, M. S., Gardner, J. P., and Mustari, M. J., 1984, Effects of neonatally induced strabismus on binocular responses in cat area 18, Exp. Brain Res. 53:384–399.PubMedCrossRefGoogle Scholar
  10. Daw, N. W., and Wyatt, H. J., 1976, Kittens reared in a unidirectional environment: Evidence for a critical period, J. Physiol. (London) 257:155–170.Google Scholar
  11. Daw, N. W., Fox, K., Sato, H., and Czepita, D., 1992, Critical period for monocular deprivation in the cat visual cortex, J. Neurophysiol. 67:197–202.PubMedGoogle Scholar
  12. Dews, P. D., and Wiesel, T. N., 1970, Consequences of monocular deprivation on visual behaviour in kittens, J. Physiol. (London) 206:437–455.Google Scholar
  13. Distler, C., and Hoffmann, K. P., 1991, Depth perception and cortical physiology in normal and innate microstrabismic cats, Vis. Neurosci. 6:25–41.PubMedCrossRefGoogle Scholar
  14. Eggers, H. M., and Blakemore, C, 1978, Physiological basis of anisometropic amblyopia, Science 201:264–266.PubMedCrossRefGoogle Scholar
  15. Freeman, R. D., and Tsumoto, T., 1983, An electrophysiological comparison of convergent and divergent strabismus in the cat: Electrical and visual activation of single cortical cells, J. Neurophysiol. 49:238–253.PubMedGoogle Scholar
  16. Grant, S., and Berman, N. E. J., 1991, Mechanism of anomalous retinal correspondence: Maintenance of binocularity with alteration of receptive-field position in the lateral suprasylvian (LS) visual area of strabismic cats, Vis. Neurosci. 7:259–281.PubMedCrossRefGoogle Scholar
  17. Hendrickson, A. E., Movshon, J. A., Eggers, H. M., Gizzi, M. S., Boothe, R. G., and Kiorpes, L., 1987, Effects of early unilateral blur on the macaques’s visual system. II. Anatomical observations, J. Neurosci. 7:1327–1339.PubMedGoogle Scholar
  18. Hirsch, H. V. B., and Spinelli, D. N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science 168:869–871.PubMedCrossRefGoogle Scholar
  19. Hubel, D. H., and Wiesel, T. N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28:1041–1059.PubMedGoogle Scholar
  20. Hubel, D. H., Wiesel, T. N., and LeVay, S., 1975, Functional architecture of area 17 in normal and monocularly deprived macaque monkeys, Cold Spring Harbor Symp. Quant. Biol. 40:581–589.CrossRefGoogle Scholar
  21. Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B. 278:377–409.CrossRefGoogle Scholar
  22. Ikeda, H., and Wright, M. J., 1976, Properties of LGN cells in kittens reared with convergent squint: A neurophysiological demonstration of amblyopia, Exp. Brain Res. 25:63–77.PubMedCrossRefGoogle Scholar
  23. Kalil, R. E., Spear, P. D., and Langsetmo, A., 1984, Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus, J. Neurophysiol. 52:514–537.PubMedGoogle Scholar
  24. Kiorpes, L., and Boothe, R. G., 1981, Naturally occurring strabismus in monkeys (Macaca nemestrina), Invest. Ophthalmol. Vis. Sci. 20:257–263.PubMedGoogle Scholar
  25. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 1991:1–51.CrossRefGoogle Scholar
  26. Movshon, J. A., 1976, Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex, J. Physiol. (London) 261:125–174.Google Scholar
  27. Movshon, J. A., Eggers, H. M., Gizzi, M. S., Hendrickson, A. E., Kiorpes, L., and Boothe, R. G., 1987, Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations, J. Neurosci. 7:1340–1351.PubMedGoogle Scholar
  28. Mower, G. D., Caplan, C. J., Christen, W. G., and Duffy, F. H., 1985, Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex, J. Comp. Neurol. 235:448–466.PubMedCrossRefGoogle Scholar
  29. Sengpiel, F., Blakemore, C., Kind, P. C., and Harrad, R., 1994, Interocular suppression in the visual cortex of strabismic cats, J. Neurosci. 14:6855–6871.PubMedGoogle Scholar
  30. Shatz, C. J., and Stryker, M. P., 1978, Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation, J. Physiol. (London) 281:267–283.Google Scholar
  31. Sherman, S. M., 1985, Development of retinal projections to the cat’s lateral geniculate nucleus, Trends Neurosci. 8:350–355.CrossRefGoogle Scholar
  32. Sherman, S. M., and Stone, J., 1973, Physiological normality of the retina in visually deprived cats, Brain Res. 60:224–230.PubMedCrossRefGoogle Scholar
  33. Singer, W., Rauschecker, J., and von Grunau, M., 1979, Squint affects striate cortex cells encoding horizontal image movements, Brain Res. 170:182–186.PubMedCrossRefGoogle Scholar
  34. Singer, W., von Grunau, M. W., and Rauschecker, J. P., 1980, Functional amblyopia in kittens with unilateral exotropia. I. Electrophysiological assessment, Exp. Brain Res. 40:294–304.PubMedCrossRefGoogle Scholar
  35. Sireteanu, R., and Best, J., 1992, Squint-induced modification of visual receptive fields in the lateral suprasylvian cortex of the cat: Binocular interaction, vertical effect and anomalous correspondence, Eur. J. Neurosci. 4:235–242.PubMedCrossRefGoogle Scholar
  36. Smith, E. L., Harwerth, R. S., and Crawford, M. L. J., 1985, Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia, Invest. Ophthalmol. Vis. Sci. 26:330–342.PubMedGoogle Scholar
  37. Spear, P. D., Tong, L., and Langsetmo, A., 1978, Striate cortex neurons of binocularly deprived kittens respond to visual stimuli through the closed eyelids, Brain Res. 155:141–146.PubMedCrossRefGoogle Scholar
  38. Sur, M., Humphrey, A. H., and Sherman, S. M., 1982, Monocular deprivation affects X-and Y-cell terminations in cats, Nature 300:183–185.PubMedCrossRefGoogle Scholar
  39. Tieman, S. B., 1984, Effects of monocular deprivation on geniculocortical synapses in the cat, J. Comp. Neurol. 222:166–176.PubMedCrossRefGoogle Scholar
  40. Tumosa, N., Tieman, S. B., and Tieman, D. G., 1989, Binocular competition affects the pattern and intensity of ocular activation columns in the visual cortex of cats, Vis. Neurosci. 2:391–407.PubMedCrossRefGoogle Scholar
  41. von Grunau, M. W., and Singer, W., 1980, Functional amblyopia in kittens with unilateral exotropia. II. Correspondence between behavioural and electrophysiological assessment, Exp.Brain Res. 40:305–310.CrossRefGoogle Scholar
  42. von Noorden, G. K., Dowling, J. E., and Ferguson, D. C., 1970, Experimental amblyopia in monkeys, Arch. Ophthalmol. 84:206–214.CrossRefGoogle Scholar
  43. Wiesel, T. N., 1982, Postnatal development of the visual cortex and the influence of environment, Nature 299:583–591.PubMedCrossRefGoogle Scholar
  44. Wiesel, T. N., and Hubel, D. H., 1963a, Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body, J. Neurophysiol. 26:978–993.PubMedGoogle Scholar
  45. Wiesel, T. N., and Hubel, D. H., 1963b, Single cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26:1003–1017.PubMedGoogle Scholar
  46. Wiesel, T. N., and Hubel, D. H., 1965, Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens, J. Neurophysiol. 28:1029–1040.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations