Development of Receptive Field Properties

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)


The physiological properties of most cells in the visual system develop for a period of time after birth. The connections of many cells are not completely formed when the eyes open, and the visual performance of all higher mammals is initially uncertain and groping. Only with use can one analyze the visual image fully and respond to it. There is clearly a learning process occurring. The key questions are: which properties develop, where in the visual system does the development occur, and when does it happen?


Visual Cortex Receptive Field Lateral Geniculate Nucleus Orientation Selectivity Receptive Field Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus, K., and Wolf, W., 1984, Early postnatal development of neuronal function in the kitten’s visual cortex: A laminar analysis, J. Physiol. (London) 348:153–185.Google Scholar
  2. Aoki, C., and Siekevitz, P., 1985, Ontogenetic changes in the cyclic adenosine 3′,5′-monophosphate-stimulable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP 2): Effects of normal and dark rearing and of the exposure to light, J. Neurosci. 5:2465–2483.PubMedGoogle Scholar
  3. Banks, M. S., and Bennett, P. J., 1988, Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates, J. Opt. Soc. Am. [A] 5:2059–2079.CrossRefGoogle Scholar
  4. Blakemore, C., and Price, D. J., 1987, The organization and post-natal development of area 18 of the cat’s visual cortex, J. Physiol. (London) 384:263–292.Google Scholar
  5. Blakemore, C., and Van Sluyters, R. C., 1975, Innate and environmental factors in the development of the kitten’s visual cortex, J. Physiol. (London) 248:663–716.Google Scholar
  6. Blakemore, C., and Vital-Durand, F., 1986, Organization and post-natal development of the monkey’s lateral geniculate nucleus, J. Physiol. (London) 380:453–491.Google Scholar
  7. Bonds, A. B., 1979, Development of orientation tuning in the visual cortex of kittens, in: Developmental Neurobiology of Vision (R. D. Freeman, ed.), Plenum Press, New York, pp. 31–41.CrossRefGoogle Scholar
  8. Bonds, A. B., and Freeman, R. D., 1978, Development of optical quality in the kitten eye, Vision Res. 18:391–398.PubMedCrossRefGoogle Scholar
  9. Boothe, R. G., Kiorpes, L., Williams, R. A., and Teller, D., 1988, Operant measurements of spatial contrast sensitivity in infant macaque monkeys during normal development, Vision Res. 28:387–396.PubMedCrossRefGoogle Scholar
  10. Boycott, B. B., and Wassle, H., 1974, The morphological type of ganglion cells of the domestic cat’s retina, J. Physiol. (London) 240:397–419.Google Scholar
  11. Braastad, B. O., and Heggelund, P., 1985, Development of spatial receptive field organization and orientation selectivity in kitten striate cortex, J. Neurophysiol. 53:1158–1178.PubMedGoogle Scholar
  12. Buisseret, P., and Imbert, M., 1976, Visual cortical cells: Their developmental properties in normal and dark-reared kittens, J. Physiol. (London) 255:511–525.Google Scholar
  13. Chapman, B., and Stryker, M. P., 1993, Development of orientation selectivity in ferret visual cortex and effects of deprivation, J. Neurosci. 13:5251–5262.PubMedGoogle Scholar
  14. Cleland, B. G., Harding, T. H., and Tulunay-Keesey, U., 1979, Visual resolution and receptive field size: Examination of two kinds of cat retinal ganglion cell, Science 205:1015–1017.PubMedCrossRefGoogle Scholar
  15. Cynader, M., Berman, N., and Hein, A., 1976, Recovery of function in cat visual cortex following prolonged deprivation, Exp. Brain Res. 25:139–156.PubMedCrossRefGoogle Scholar
  16. Daniels, J. D., Pettigrew, J. D., and Norman, J. L., 1978, Development of single-neuron responses in kitten’s lateral geniculate nucleus, J. Neurophysiol. 41:1373–1393.PubMedGoogle Scholar
  17. Daw, N. W., 1986, Effect of dark rearing on development of myelination in cat visual cortex, Soc. Neurosci. Abstr. 12:785.Google Scholar
  18. Derrington, A. M., 1984, Development of spatial frequency selectivity in striate cortex of vision-deprived cats, Exp. Brain Res. 55:431–437.PubMedCrossRefGoogle Scholar
  19. Derrington, A. M., and Fuchs, A. F., 1981, The development of spatial-frequency selectivity in kitten striate cortex, J. Physiol. (London) 316:1–10.Google Scholar
  20. Evered, D., and Clark, S., 1985, Photoperiodism, MeJatonin and the Pineal, Pitman, London.CrossRefGoogle Scholar
  21. Freeman, R. D., and Ohzawa, I., 1992, Development of binocular vision in the kitten’s striate cortex, J. Neurosci. 12:4721–4736.PubMedGoogle Scholar
  22. Gabbott, P. C. A., and Stewart, M. G., 1987, Quantitative morphological effects of dark rearing and light exposure on the synaptic connectivity of layer 4 in the rat visual cortex (area 17), Exp. Brain Res. 68:103–114.PubMedCrossRefGoogle Scholar
  23. Hamasaki, D. I., and Flynn, J. T., 1977, Physiological properties of retinal ganglion cells of 3-week-old kittens, Vision Res. 17:275–284.PubMedCrossRefGoogle Scholar
  24. Henry, G. L., Dreher, B., and Bishop, P. O., 1974, Orientation specificity of cells in cat striate cortex, J. Neurophysiol. 37:1394–1409.PubMedGoogle Scholar
  25. Hubel, D. H., and Wiesel, T. N., 1963, Receptive fields of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol. 26:994–1002.PubMedGoogle Scholar
  26. Ikeda, I., and Tremain, K. E., 1978, The development of spatial resolving power of lateral geniculate neurones in kitten, Exp. Brain Res. 31:193–206.PubMedGoogle Scholar
  27. Jacobs, D. S., and Blakemore, C., 1988, Factors limiting the postnatal development of visual acuity in the monkey, Vision Res. 28:947–958.PubMedCrossRefGoogle Scholar
  28. LeVay, S., Stryker, M. P., and Shatz, C. J., 1978, Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study, J. Comp. Neurol. 179:223–244.PubMedCrossRefGoogle Scholar
  29. Leventhal, A. G., and Hirsch, H. V. B., 1980, Receptive-field properties of different classes of neurons in visual cortex of normal and dark-reared cats, J. Neurophysiol. 43:111–1132.Google Scholar
  30. Milleret, C., Gary-Bobo, E., and Buisseret, P., 1988, Comparative development of cell properties in cortical area 18 of normal and dark-reared kittens, Exp. Brain Res. 71:8–20.PubMedCrossRefGoogle Scholar
  31. Mower, G. D., Berry, D., Burchfiel, J. L., and Duffy, F. H., 1981, Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex, Brain Res. 220:255–267.PubMedCrossRefGoogle Scholar
  32. Mower, G. D., Rustad, R., and White, W F., 1988, Quantitative comparisons of gamma-aminobutyric acid neurons and receptors in the visual cortex of normal and dark-reared cats, J. Comp. Neurol. 272:293–302.PubMedCrossRefGoogle Scholar
  33. Pettigrew, J. D., 1974, The effect of visual experience on the development of stimulus specificity by kitten cortical neurones, J. Physiol. (London) 237:49–74.Google Scholar
  34. Price, D. J., Zumbroich, T. J., and Blakemore, C, 1988, Development of stimulus selectivity and functional organisation in the suprasylvian visual cortex of the cat, Proc. R. Soc. London Ser. B 233:123–163.CrossRefGoogle Scholar
  35. Reid, S. N. M., and Daw, N. W, 1995, Dark-rearing changes microtubule-associated protein 2 (MAP 2) dendrites but not subplate neurons in cat visual cortex, J. Comp. Neurol. 355:470–478.PubMedCrossRefGoogle Scholar
  36. Rusoff, A. C., and Dubin, M. W., 1977, Development of receptive field properties of retinal ganglion cells in kittens, J. Neurophysiol. 40:1188–1198.PubMedGoogle Scholar
  37. Rusoff, A. C., and Dubin, M. W., 1978, Kitten ganglion cells: Dendritic field size at 3 weeks of age and correlation with receptive field size, Invest. Ophthalmol. Vis. Sci. 17:819–821.PubMedGoogle Scholar
  38. Sherk, H., and Stryker, M. P., 1976, Quantitative study of cortical orientation selectivity in visually inexperienced kitten, J. Neurophysiol. 39:63–70.PubMedGoogle Scholar
  39. Sherman, S. M., 1972, Development of interocular alignment in cats, Brain Res. 37:187–203.PubMedCrossRefGoogle Scholar
  40. Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 91–117.CrossRefGoogle Scholar
  41. Singer, W., and Tretter, F., 1976, Receptive field properties and neuronal connectivity in striate and parastriate cortex of contour-deprived cats, J. Neurophysiol. 39:613–630.PubMedGoogle Scholar
  42. Spear, P. D., Tong, L., and Langsetmo, A., 1978, Striate cortex neurons of binocularly deprived kittens respond to visual stimuli through the closed eyelids, Brain Res. 155:141–146.PubMedCrossRefGoogle Scholar
  43. Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2133.PubMedGoogle Scholar
  44. Sur, M., Weller, R. E., and Sherman, S. M., 1984, Development of X-and Y-cell retinogeniculate terminations in kittens, Nature 310:246–249.PubMedCrossRefGoogle Scholar
  45. Takacs, J., Saillour, P., Imbert, M., Bogner, M., and Hamori, J., 1992, Effect of dark rearing on the volume of visual cortex (areas 17 and 18) and the number of visual cortical cells in young kittens, J. Neurosci. Res. 32:449–459.PubMedCrossRefGoogle Scholar
  46. Tanaka, K., Freeman, R. D., and Ramoa, A. S., 1987, Dark-reared kittens: GAB A sensitivity of cells in the visual cortex, Exp. Brain Res. 65:673–675.PubMedGoogle Scholar
  47. Thompson, I. D., Kossut, M., and Blakemore, C., 1983, Development of orientation columns in cat striate cortex revealed by 2-deoxyglucose autoradiography, Nature 301:712–715.PubMedCrossRefGoogle Scholar
  48. Thorn, F., Gollender, M., and Erickson, P., 1976, The development of the kitten’s visual optics, Vision Res. 16:1145–1149.PubMedCrossRefGoogle Scholar
  49. Tootle, J. S., 1993, Early postnatal development of visual function in ganglion cells of the cat retina, J. Neurophysiol. 69:1645–1660.PubMedGoogle Scholar
  50. Tootle, J. S., and Friedlander, M. J., 1986, Postnatal development of receptive field surround inhibition in kitten dorsal lateral geniculate nucleus, J. Neurophysiol. 56:523–541.PubMedGoogle Scholar
  51. Tootle, J. S., and Friedlander, M. J., 1989, Postnatal development of the spatial contrast sensitivity of X-and Y-cells in the kitten retinogeniculate pathway, J. Neurosci. 9:1325–1340.PubMedGoogle Scholar
  52. Tsumoto, T., and Freeman, R. D., 1987, Dark-reared cats: Responsivity of cortical cells influenced pharmacologically by an inhibitory antagonist, Exp. Brain Res. 65:666–672.PubMedCrossRefGoogle Scholar
  53. Wiesel, T. N., and Hubel, D. H., 1965, Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens, J. Neurophysiol. 28:1029–1040.PubMedGoogle Scholar
  54. Wiesel, T. N., and Hubel, D. H., 1974, Ordered arrangement of orientation columns in monkeys lacking visual experience, J. Comp. Neurol. 158:307–318.PubMedCrossRefGoogle Scholar
  55. Wilson, J. R., Tessin, D. E., and Sherman, S. M., 1982, Development of the electrophysiological properties of Y-cells in the kitten’s medial interlaminar nucleus, J. Neurosci. 2:562–571.PubMedGoogle Scholar
  56. Windle, W. F., 1930, Normal behavioral reactions of kittens correlated with the postnatal development of nerve-fiber density in the spinal gray matter, J. Comp. Neurol. 50:479–497.CrossRefGoogle Scholar
  57. Winfield, D. A., 1983, The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture, Dev. Brain Res. 9:155–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations