Skip to main content

Functional Organization of the Visual System

  • Chapter
Visual Development

Part of the book series: Perspectives in Vision Research ((PIVR))

  • 70 Accesses

Abstract

The visual system must convert the pattern of light that falls on the retina into perceptions. This involves a transformation of the visual image in several dimensions. Take, for example, depth perception. There are several cues to depth perception, including disparity, vergence, perspective, shading, texture gradients, interposition, motion parallax, size, and accommodation. For a complete perception, all of these must be analyzed. Where some cues conflict with others (see Kaufman, 1974), the system must resolve the conflicts and come to a decision. Where the cues agree with each other, the system produces a perception of the distance of an object from the subject, its position in relation to other objects nearby, and the three-dimensional shape of the object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, T. D., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51:16–31.

    PubMed  CAS  Google Scholar 

  • Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357:497–499.

    Article  PubMed  CAS  Google Scholar 

  • Boycott, B. B., and Dowling, J. E., 1969, Organization of the primate retina: Light microscopy, Philos. Trans. R. Soc. London Ser. B. 255:109–184.

    Article  Google Scholar 

  • Cleland, B. G., and Levick, W. R., 1974, Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification, J. Physiol. (London) 240: 457–492.

    CAS  Google Scholar 

  • Daw, N. W., 1967, Goldfish retina: Organization for simultaneous color contrast, Science 158:942–944.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N. W., 1984, The psychology and physiology of colour vision, Trends Neurosci. 7:330–336.

    Article  Google Scholar 

  • De Monasterio, F. M., and Gouras, P., 1975, Functional properties of ganglion cells of the rhesus monkey retina, J. Physiol. (London) 251:167–195.

    Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. (London) 187:517–552.

    CAS  Google Scholar 

  • Famiglietti, E. V., and Kolb, H., 1976, Structural basis for ON-and OFF-center responses in retinal ganglion cells, Science 194:193–195.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci 7:3378–3415.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in cat’s visual cortex, J. Physiol. (London) 160:106–154.

    CAS  Google Scholar 

  • Kaufman, L., 1974, Sight and Mind, Oxford University Press, London.

    Google Scholar 

  • Kuffler, S. W., 1953, Discharge patterns and functional organization of mammalian retina, J. Neurophysiol. 16:37–68.

    PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4:309–356.

    PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7:3371–3377.

    PubMed  CAS  Google Scholar 

  • MacNichol, E. F., and Svaetichin, G., 1958, Electric responses from the isolated retinas of fishes, Am. J. Ophthalmol. 46:26–46.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.

    PubMed  CAS  Google Scholar 

  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (C. Chaga, R. Gattass, and C. Gross, eds.), Pontifical Academy of Sciences, Vatican City, pp. 117–151.

    Google Scholar 

  • Poggio, G. F., Gonzalez, F., and Krause, F., 1988, Stereoscopic mechanisms in monkey visual cortex: Binocular correlation and disparity selectivity, J. Neurosci. 8:4531–4550.

    PubMed  CAS  Google Scholar 

  • Polyak, S. L., 1941, The Retina, University of Chicago Press, Chicago.

    Google Scholar 

  • Rosenquist, A., 1985, Connections of visual cortical areas in the cat, in: Cerebral Cortex (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 81–117.

    Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1977, Properties and tectal projections of monkey ganglion cells, J. Neurophysiol. 40:428–445.

    PubMed  CAS  Google Scholar 

  • Sherman, S. M., and Koch, C, 1986, The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus, Exp. Brain Res. 63:1-20.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.

    Book  Google Scholar 

  • Stone, J., and Fukuda, Y., 1974, Properties of cat retinal ganglion cells: A comparison of W-cells with X-and Y-cells, J. Neurophysiol. 37:722–748.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Hikosaka, K., Saito, H. E., Yukie, M., Fukada, Y, and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6:134–144.

    PubMed  CAS  Google Scholar 

  • Van Essen, D. C., Anderson, C. H., and Felleman, D. J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255:419–423.

    Article  PubMed  Google Scholar 

  • Werblin, F. S., and Dowling, J. E., 1969, Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording, J. Neurophysiol. 32:339–355.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey, J. Neurophysiol. 29:1115–1156.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1977, Colour coding in the superior temporal sulcus of the rhesus monkey visual cortex, Proc. R. Soc. London B Ser. 197:195–223.

    Article  CAS  Google Scholar 

  • Zeki, S. M., 1978, Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex, J. Physiol. (London) 277:273–290.

    CAS  Google Scholar 

  • Zeki, S. M., 1983, Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9:741–765.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (1995). Functional Organization of the Visual System. In: Visual Development. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6940-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6940-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6942-5

  • Online ISBN: 978-1-4757-6940-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics