Skip to main content

Mechanisms of Plasticity in the Visual Cortex

  • Chapter
Visual Development

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

Work on LTP suggests a number of transmitters and second messengers that may be involved in plasticity in the hippocampus. Several of these have also been implicated in sensory-dependent plasticity in the visual cortex. We will now review the evidence in the visual cortex for this involvement. We will also review the evidence as to which of the factors might represent a difference between young animals and adults: after all, that is the crucial question in terms of understanding why young animals are plastic and adults are not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorfer, K. L., Cabelli, R. J., Escandon, E., Kaplan, D. R., Nikolics, K., and Shatz, C. J., 1994, Regulation of neurotrophin receptors during the maturation of the mammalian visual system, J. Neurosci. 14:1795–1811.

    Google Scholar 

  • Artola, A., Brocher, S., and Singer, W., 1990, Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex, Nature 347: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Bear, M. F., and Dudek, S. M., 1991, Stimulation of phosphoinositide turnover by excitatory amino acids: Pharmacology, development, and role in visual cortical plasticity, Ann. N.Y. Acad. Sci. 627:42–56.

    Article  PubMed  CAS  Google Scholar 

  • Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Bode-Greuel, K. M., and Singer, W., 1988, Developmental changes of the distribution of binding sites for organic Ca++ channel blockers in cat visual cortex, Brain Res. 70:266–275.

    CAS  Google Scholar 

  • Brocher, S., Artola, A., and Singer, W., 1992, Intracellular injection of Ca2+ chelators blocks induction of long-term depression in rat visual cortex, Proc. Natl. Acad. Sci. USA 89:123–127.

    Article  PubMed  CAS  Google Scholar 

  • Cabelli, R. J., Radeke, M. J., Wright, A., Allendorfer, K. L., Feinstein, S. C., and Shatz, C. J., 1994, Developmental patterns of localization of full-length and truncated TRKB proteins in the mammalian visual system, Soc. Neurosci. Abstr. 20:37.

    Google Scholar 

  • Carmignoto, G., and Vicini, S., 1992, Activity-dependent decrease in NMDA receptor responses during development of the visual cortex, Science 258:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Carmignoto, G., Canella, R., Candeo, P., Comelli, M. C., and Maffei, L., 1993, Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex, J. Physiol. (London) 464:343–360.

    CAS  Google Scholar 

  • Cline, H. T., Debski, E. A., and Constantine-Paton, M., 1987, N-methyl-d-aspartate antagonist desegregates eye-specific stripes, Proc. Natl. Acad. Sci. USA 84:4342–4345.

    Article  CAS  Google Scholar 

  • Cynader, M. S., Shaw, C, van Huizen, F., and Prusky, G. T., 1991, Redistribution of neurotransmitter receptors and the mechanism of cortical developmental plasticity, in: Development of the Visual System (D. M. Lam and C. J. Shatz, eds.), MIT Press, Cambridge, MA, pp. 253–265.

    Google Scholar 

  • Daw, N. W., 1994, Mechanisms of plasticity in the visual cortex, Invest. Ophthalmol. Vis. Sci. 35:4168–4179.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Videen, T. O., Parkinson, D., and Rader, R. K., 1985, DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) depletes noradrenaline in kitten visual cortex without altering the effects of visual deprivation, J. Neurosci. 5:1925–1933.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Sato, H., Fox, K., Carmichael, T., and Gingerich, R., 1991, Cortisol reduces plasticity in the kitten visual cortex, J. Neurobiol. 22:158–168.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N. W., Reid, S. N. M., and Czepita, D., 1994, Infusion of a nitric oxide synthase inhibitor in vivo reduces the ocular dominance shift after monocular deprivation, Invest. Ophthalmol. Vis. Sci. 35(Suppl.):1773.

    Google Scholar 

  • Dudek, S. M., and Bear, M. F., 1989, A biochemical correlate of the critical period for synaptic modification in the visual cortex, Science 246:673–675.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, R. H., and Cynader, M. S., 1993, Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: Transient regional, laminar and columnar distributions during postnatal development, J. Neurosci. 13:4316–4338.

    PubMed  CAS  Google Scholar 

  • Dyck, R. H., and Cynader, M. S., 1993, An interdigitated columnar mosaic of cytochrome oxidase, zinc and neurotransmitter-related molecules in cat and monkey visual cortex, Proc. Natl. Acad. Sci. USA 90:9066–9099.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, R. H., Van Eldik, L. J., and Cynader, M. S., 1993, Immunohistochemical localization of the S-100β protein in postnatal cat visual cortex: Spatial and temporal patterns of expression in cortical and subcortical glia, Dev. Brain Res. 72:181–192.

    Article  CAS  Google Scholar 

  • Feldman, D., Sherin, J. E., Press, W. A., and Bear, M. F., 1990, N-methyl-d-aspartate-evoked calcium uptake by kitten visual cortex maintained in vitro, Exp. Brain Res. 80:252–259.

    Article  PubMed  CAS  Google Scholar 

  • Flavin, H. J., Daw, N. W., Gregory, D., and Reid, S. N. M., 1994, Metabotropic glutamate receptor stimulated cAMP is implicated in visual cortical plasticity, Soc. Neurosci. Abstr. 20:1171.

    Google Scholar 

  • Fox, K., Sato, H., and Daw, N. W., 1989, The location and function of NMDA receptors in cat and kitten visual cortex, J. Neurosci. 9:2443–2454.

    PubMed  CAS  Google Scholar 

  • Fox, K., Daw, N. W., Sato, H., and Czepita, D., 1992, The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex, J. Neurosci. 12:2672–2684.

    PubMed  CAS  Google Scholar 

  • Fregnac, Y., Schulz, D., Thorpe, S., and Bienenstock, E., 1992, Cellular analogs of visual cortical epigenesis. I. Plasticity of orientation selectivity, J. Neurosci. 12:1280–1300, 1301-1318.

    PubMed  CAS  Google Scholar 

  • Funauchi, M., Haruta, H., and Tsumoto, T., 1994, Effects of an inhibitor for calcium/calmodulin-dependent protein phosphatase, calcineurin, on induction of long-term potentiation in rat visual cortex, Neurosci. Res. 19:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, D. C., Ruthazer, S., Dawson, T. M., Snyder, S. H., and Stryker, M. P., 1993, Nitric oxide synthase inhibition does not prevent ocular dominance plasticity in cat visual cortex, Soc. Neurosci. Abstr. 19:893.

    Google Scholar 

  • Gordon, B., Allen, E. E., and Trombley, P. Q., 1988, The role of norepinephrine in plasticity of visual cortex, Prog. Neurobiol. 30:171–191.

    CAS  Google Scholar 

  • Gordon, B., Mitchell, B., Mohtadi, K., Roth, E., Tseng, Y., and Turk, F., 1990, Lesions of nonvisual inputs affect plasticity, norepinephrine content and acetylcholine content of visual cortex, J. Neurophysiol. 64:1851–1860.

    PubMed  CAS  Google Scholar 

  • Gordon, B., Daw, N. W., and Parkinson, D., 1991, The effect of age on binding of MK-801 in the cat visual cortex, Dev. Brain Res. 62:61–67.

    Article  CAS  Google Scholar 

  • Gordon, J. A., Silva, A., Morris, R., Stewart, C., Silver, I., Tokugawa, Y., and Stryker, M. P., 1994, Plasticity in mouse visual cortex: Critical period and effects of αCaMKII and Thy-I mutations, Soc. Neurosci. Abstr. 20:405.

    Google Scholar 

  • Goto, S., Singer, W., and Gu, Q., 1993, Immunocytochemical localization of calcineurin in the adult and developing primary visual cortex of cats, Exp. Brain Res. 96:377–386.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Q., and Singer, W., 1993, Effects of intracortical infusion of anticholinergic drugs on neuronal plasticity in kitten striate cortex, Eur. J. Neurosci. 5:475–485.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Q., Liu, Y., and Cynader, M. S., 1994, Nerve growth factor-induced ocular dominance plasticity in adult cat visual cortex, Proc. Natl. Acad. Sci. USA 91:8408–8412.

    Article  PubMed  CAS  Google Scholar 

  • Hensch, T. K., and Stryker, M. P., 1994, Postsynaptic metabotropic glutamate receptors do not mediate ocular dominance plasticity, Soc. Neurosci. Abstr. 20:216.

    Google Scholar 

  • Jia, W. G., Beaulieu, C., Huang, F. L., and Cynader, M. S., 1990, Protein kinase C immunoreactivity in kitten visual cortex is developmentally regulated and input-dependent, Dev. Brain Res. 57:209–222.

    Article  CAS  Google Scholar 

  • Jia, W. G., Beaulieu, C., Liu, Y. L., and Cynader, M. S., 1992, Calcium calmodulin dependent kinase II in cat visual cortex and its development, Dev. Neurosci. 14:238–246.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D., 1979, Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine, J. Comp. Neurol. 185:139–162.

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., 1993, Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex, Proc. Natl. Acad. Sci. USA 90:3650–3654.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, F., Tsumoto, T., Nishigori, A., and Yoshimura, Y., 1990, Long-term depression but not potentiation is induced in Ca2+-chelated visual cortex neurons, Neuroreport 1:65–68.

    Article  PubMed  CAS  Google Scholar 

  • Kind, P., Blakemore, C., Fryer, H., and Hockfield, S., 1994, Identification of proteins downregulated during the postnatal development of the cat visual cortex, Cereb. Cortex 4:361–375.

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt, A., Bear, M. F., and Singer, W., 1987, Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex, Science 238:355–358.

    Article  PubMed  CAS  Google Scholar 

  • LeVay, S., Stryker, M. P., and Shatz, C. J., 1978, Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study, J. Comp. Neurol. 179:223–244.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M. H., Takahashi, M. P., Takahashi, Y., and Tsumoto, T., 1994, Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development, Neurosci. Res. 20:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Jia, W., Gu, Q., and Cynader, M. S., 1994, Involvement of muscarinic acetylcholine receptors in regulation of kitten visual cortex plasticity, Dev. Brain Res. 79:63–71.

    Article  CAS  Google Scholar 

  • McCormick, D. A., and Prince, D. A., 1987, Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurons, J. PhysioJ. (London) 383:743–762.

    Google Scholar 

  • Mower, G. D., 1991, The effect of dark rearing on the time course of the critical period in cat visual cortex, Dev. Brain Res. 58:151–158.

    Article  CAS  Google Scholar 

  • Prasad, S. S., and Cynader, M. S., 1994, Identification of cDNA clones expressed selectively during the critical period for visual cortex development by subtractive hybridization, Brain Res. 639:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Prusky, G. T., and Cynader, M. S., 1990, The distribution of Ml and M2 muscarinic acetylcholine receptor subtypes in the developing cat visual cortex, Dev. Brain Res. 56:1–12.

    Article  CAS  Google Scholar 

  • Reid, S. N. M., Romano, C., Hughes, T., and Daw, N. W., 1995, Immunohistochemical study of two phosphoinositide-linked metabotropic glutamate receptors (mGluRlα and mGluR5) in the cat visual cortex before, during and after the peak of the critical period for eye-specific connections, J. Comp. Neurol. 355:1–8.

    Article  Google Scholar 

  • Rocha, M., and Sur, M., 1994, Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of NMDA receptors, Soc. Neurosci. Abstr. 20:1471.

    Google Scholar 

  • Sato, H., Fox, K., and Daw, N. W., 1989, Effect of electrical stimulation of locus coeruleus on the activity of neurons in the visual cortex, J. Neurophysiol. 62:946–958.

    PubMed  CAS  Google Scholar 

  • Schoen, S. W., Leutenecker, B., Kreutzberg, G. W., and Singer, W., 1990, Ocular dominance plasticity and developmental changes of 5′-nucleotidase distributions in the kitten visual cortex, J. Comp. Neurol. 296:379–392.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Stryker, M. P., 1988, Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents, Science 242:87–89.

    Article  PubMed  CAS  Google Scholar 

  • Sheu, F. S., Kasamatsu, T, and Routtenberg, A., 1990, Protein kinase C activity and substrate (Fl/GAP-43) phosphorylation in developing cat visual cortex, Brain Res. 524:144–148.

    Article  PubMed  CAS  Google Scholar 

  • Stichel, C. C., and Singer, W., 1988, Localization of isoenzymes II/III of protein kinase C in the rat visual cortex (area 17), hippocampus and dentate gyrus, Exp. Brain Res. 72:443–449.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Sugiyama, M., and Tsumoto, T., 1993, Contribution of NMDA receptors to tetanus-induced increase in postsynaptic Ca2+ in visual cortex of young rats, Neurosci. Res. 17:229–239.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. O. L., Meister, M., and Shatz, C. J., 1993, Transient period of correlated bursting activity during development of the mammalian retina, Neuron 11:923–938.

    Article  PubMed  CAS  Google Scholar 

  • Yuste, R., and Katz, L. C., 1991, Control of postsynaptic Ca++ influx in developing neocortex by excitatory and inhibitory neurotransmitters, Neuron 6:333–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (1995). Mechanisms of Plasticity in the Visual Cortex. In: Visual Development. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6940-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6940-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6942-5

  • Online ISBN: 978-1-4757-6940-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics