Mechanisms of Plasticity in the Visual Cortex

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)


Work on LTP suggests a number of transmitters and second messengers that may be involved in plasticity in the hippocampus. Several of these have also been implicated in sensory-dependent plasticity in the visual cortex. We will now review the evidence in the visual cortex for this involvement. We will also review the evidence as to which of the factors might represent a difference between young animals and adults: after all, that is the crucial question in terms of understanding why young animals are plastic and adults are not.


NMDA Receptor Visual Cortex Critical Period Metabotropic Glutamate Receptor Lateral Geniculate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorfer, K. L., Cabelli, R. J., Escandon, E., Kaplan, D. R., Nikolics, K., and Shatz, C. J., 1994, Regulation of neurotrophin receptors during the maturation of the mammalian visual system, J. Neurosci. 14:1795–1811.Google Scholar
  2. Artola, A., Brocher, S., and Singer, W., 1990, Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex, Nature 347: 69–72.PubMedCrossRefGoogle Scholar
  3. Bear, M. F., and Dudek, S. M., 1991, Stimulation of phosphoinositide turnover by excitatory amino acids: Pharmacology, development, and role in visual cortical plasticity, Ann. N.Y. Acad. Sci. 627:42–56.PubMedCrossRefGoogle Scholar
  4. Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320:172–176.PubMedCrossRefGoogle Scholar
  5. Bode-Greuel, K. M., and Singer, W., 1988, Developmental changes of the distribution of binding sites for organic Ca++ channel blockers in cat visual cortex, Brain Res. 70:266–275.Google Scholar
  6. Brocher, S., Artola, A., and Singer, W., 1992, Intracellular injection of Ca2+ chelators blocks induction of long-term depression in rat visual cortex, Proc. Natl. Acad. Sci. USA 89:123–127.PubMedCrossRefGoogle Scholar
  7. Cabelli, R. J., Radeke, M. J., Wright, A., Allendorfer, K. L., Feinstein, S. C., and Shatz, C. J., 1994, Developmental patterns of localization of full-length and truncated TRKB proteins in the mammalian visual system, Soc. Neurosci. Abstr. 20:37.Google Scholar
  8. Carmignoto, G., and Vicini, S., 1992, Activity-dependent decrease in NMDA receptor responses during development of the visual cortex, Science 258:1007–1011.PubMedCrossRefGoogle Scholar
  9. Carmignoto, G., Canella, R., Candeo, P., Comelli, M. C., and Maffei, L., 1993, Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex, J. Physiol. (London) 464:343–360.Google Scholar
  10. Cline, H. T., Debski, E. A., and Constantine-Paton, M., 1987, N-methyl-d-aspartate antagonist desegregates eye-specific stripes, Proc. Natl. Acad. Sci. USA 84:4342–4345.CrossRefGoogle Scholar
  11. Cynader, M. S., Shaw, C, van Huizen, F., and Prusky, G. T., 1991, Redistribution of neurotransmitter receptors and the mechanism of cortical developmental plasticity, in: Development of the Visual System (D. M. Lam and C. J. Shatz, eds.), MIT Press, Cambridge, MA, pp. 253–265.Google Scholar
  12. Daw, N. W., 1994, Mechanisms of plasticity in the visual cortex, Invest. Ophthalmol. Vis. Sci. 35:4168–4179.PubMedGoogle Scholar
  13. Daw, N. W., Videen, T. O., Parkinson, D., and Rader, R. K., 1985, DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) depletes noradrenaline in kitten visual cortex without altering the effects of visual deprivation, J. Neurosci. 5:1925–1933.PubMedGoogle Scholar
  14. Daw, N. W., Sato, H., Fox, K., Carmichael, T., and Gingerich, R., 1991, Cortisol reduces plasticity in the kitten visual cortex, J. Neurobiol. 22:158–168.PubMedCrossRefGoogle Scholar
  15. Daw, N. W., Reid, S. N. M., and Czepita, D., 1994, Infusion of a nitric oxide synthase inhibitor in vivo reduces the ocular dominance shift after monocular deprivation, Invest. Ophthalmol. Vis. Sci. 35(Suppl.):1773.Google Scholar
  16. Dudek, S. M., and Bear, M. F., 1989, A biochemical correlate of the critical period for synaptic modification in the visual cortex, Science 246:673–675.PubMedCrossRefGoogle Scholar
  17. Dyck, R. H., and Cynader, M. S., 1993, Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: Transient regional, laminar and columnar distributions during postnatal development, J. Neurosci. 13:4316–4338.PubMedGoogle Scholar
  18. Dyck, R. H., and Cynader, M. S., 1993, An interdigitated columnar mosaic of cytochrome oxidase, zinc and neurotransmitter-related molecules in cat and monkey visual cortex, Proc. Natl. Acad. Sci. USA 90:9066–9099.PubMedCrossRefGoogle Scholar
  19. Dyck, R. H., Van Eldik, L. J., and Cynader, M. S., 1993, Immunohistochemical localization of the S-100β protein in postnatal cat visual cortex: Spatial and temporal patterns of expression in cortical and subcortical glia, Dev. Brain Res. 72:181–192.CrossRefGoogle Scholar
  20. Feldman, D., Sherin, J. E., Press, W. A., and Bear, M. F., 1990, N-methyl-d-aspartate-evoked calcium uptake by kitten visual cortex maintained in vitro, Exp. Brain Res. 80:252–259.PubMedCrossRefGoogle Scholar
  21. Flavin, H. J., Daw, N. W., Gregory, D., and Reid, S. N. M., 1994, Metabotropic glutamate receptor stimulated cAMP is implicated in visual cortical plasticity, Soc. Neurosci. Abstr. 20:1171.Google Scholar
  22. Fox, K., Sato, H., and Daw, N. W., 1989, The location and function of NMDA receptors in cat and kitten visual cortex, J. Neurosci. 9:2443–2454.PubMedGoogle Scholar
  23. Fox, K., Daw, N. W., Sato, H., and Czepita, D., 1992, The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex, J. Neurosci. 12:2672–2684.PubMedGoogle Scholar
  24. Fregnac, Y., Schulz, D., Thorpe, S., and Bienenstock, E., 1992, Cellular analogs of visual cortical epigenesis. I. Plasticity of orientation selectivity, J. Neurosci. 12:1280–1300, 1301-1318.PubMedGoogle Scholar
  25. Funauchi, M., Haruta, H., and Tsumoto, T., 1994, Effects of an inhibitor for calcium/calmodulin-dependent protein phosphatase, calcineurin, on induction of long-term potentiation in rat visual cortex, Neurosci. Res. 19:269–278.PubMedCrossRefGoogle Scholar
  26. Gillespie, D. C., Ruthazer, S., Dawson, T. M., Snyder, S. H., and Stryker, M. P., 1993, Nitric oxide synthase inhibition does not prevent ocular dominance plasticity in cat visual cortex, Soc. Neurosci. Abstr. 19:893.Google Scholar
  27. Gordon, B., Allen, E. E., and Trombley, P. Q., 1988, The role of norepinephrine in plasticity of visual cortex, Prog. Neurobiol. 30:171–191.Google Scholar
  28. Gordon, B., Mitchell, B., Mohtadi, K., Roth, E., Tseng, Y., and Turk, F., 1990, Lesions of nonvisual inputs affect plasticity, norepinephrine content and acetylcholine content of visual cortex, J. Neurophysiol. 64:1851–1860.PubMedGoogle Scholar
  29. Gordon, B., Daw, N. W., and Parkinson, D., 1991, The effect of age on binding of MK-801 in the cat visual cortex, Dev. Brain Res. 62:61–67.CrossRefGoogle Scholar
  30. Gordon, J. A., Silva, A., Morris, R., Stewart, C., Silver, I., Tokugawa, Y., and Stryker, M. P., 1994, Plasticity in mouse visual cortex: Critical period and effects of αCaMKII and Thy-I mutations, Soc. Neurosci. Abstr. 20:405.Google Scholar
  31. Goto, S., Singer, W., and Gu, Q., 1993, Immunocytochemical localization of calcineurin in the adult and developing primary visual cortex of cats, Exp. Brain Res. 96:377–386.PubMedCrossRefGoogle Scholar
  32. Gu, Q., and Singer, W., 1993, Effects of intracortical infusion of anticholinergic drugs on neuronal plasticity in kitten striate cortex, Eur. J. Neurosci. 5:475–485.PubMedCrossRefGoogle Scholar
  33. Gu, Q., Liu, Y., and Cynader, M. S., 1994, Nerve growth factor-induced ocular dominance plasticity in adult cat visual cortex, Proc. Natl. Acad. Sci. USA 91:8408–8412.PubMedCrossRefGoogle Scholar
  34. Hensch, T. K., and Stryker, M. P., 1994, Postsynaptic metabotropic glutamate receptors do not mediate ocular dominance plasticity, Soc. Neurosci. Abstr. 20:216.Google Scholar
  35. Jia, W. G., Beaulieu, C., Huang, F. L., and Cynader, M. S., 1990, Protein kinase C immunoreactivity in kitten visual cortex is developmentally regulated and input-dependent, Dev. Brain Res. 57:209–222.CrossRefGoogle Scholar
  36. Jia, W. G., Beaulieu, C., Liu, Y. L., and Cynader, M. S., 1992, Calcium calmodulin dependent kinase II in cat visual cortex and its development, Dev. Neurosci. 14:238–246.PubMedCrossRefGoogle Scholar
  37. Kasamatsu, T., and Pettigrew, J. D., 1979, Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine, J. Comp. Neurol. 185:139–162.PubMedCrossRefGoogle Scholar
  38. Kato, N., 1993, Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex, Proc. Natl. Acad. Sci. USA 90:3650–3654.PubMedCrossRefGoogle Scholar
  39. Kimura, F., Tsumoto, T., Nishigori, A., and Yoshimura, Y., 1990, Long-term depression but not potentiation is induced in Ca2+-chelated visual cortex neurons, Neuroreport 1:65–68.PubMedCrossRefGoogle Scholar
  40. Kind, P., Blakemore, C., Fryer, H., and Hockfield, S., 1994, Identification of proteins downregulated during the postnatal development of the cat visual cortex, Cereb. Cortex 4:361–375.PubMedCrossRefGoogle Scholar
  41. Kleinschmidt, A., Bear, M. F., and Singer, W., 1987, Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex, Science 238:355–358.PubMedCrossRefGoogle Scholar
  42. LeVay, S., Stryker, M. P., and Shatz, C. J., 1978, Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study, J. Comp. Neurol. 179:223–244.PubMedCrossRefGoogle Scholar
  43. Lin, M. H., Takahashi, M. P., Takahashi, Y., and Tsumoto, T., 1994, Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development, Neurosci. Res. 20:85–94.PubMedCrossRefGoogle Scholar
  44. Liu, Y., Jia, W., Gu, Q., and Cynader, M. S., 1994, Involvement of muscarinic acetylcholine receptors in regulation of kitten visual cortex plasticity, Dev. Brain Res. 79:63–71.CrossRefGoogle Scholar
  45. McCormick, D. A., and Prince, D. A., 1987, Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurons, J. PhysioJ. (London) 383:743–762.Google Scholar
  46. Mower, G. D., 1991, The effect of dark rearing on the time course of the critical period in cat visual cortex, Dev. Brain Res. 58:151–158.CrossRefGoogle Scholar
  47. Prasad, S. S., and Cynader, M. S., 1994, Identification of cDNA clones expressed selectively during the critical period for visual cortex development by subtractive hybridization, Brain Res. 639:73–84.PubMedCrossRefGoogle Scholar
  48. Prusky, G. T., and Cynader, M. S., 1990, The distribution of Ml and M2 muscarinic acetylcholine receptor subtypes in the developing cat visual cortex, Dev. Brain Res. 56:1–12.CrossRefGoogle Scholar
  49. Reid, S. N. M., Romano, C., Hughes, T., and Daw, N. W., 1995, Immunohistochemical study of two phosphoinositide-linked metabotropic glutamate receptors (mGluRlα and mGluR5) in the cat visual cortex before, during and after the peak of the critical period for eye-specific connections, J. Comp. Neurol. 355:1–8.CrossRefGoogle Scholar
  50. Rocha, M., and Sur, M., 1994, Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of NMDA receptors, Soc. Neurosci. Abstr. 20:1471.Google Scholar
  51. Sato, H., Fox, K., and Daw, N. W., 1989, Effect of electrical stimulation of locus coeruleus on the activity of neurons in the visual cortex, J. Neurophysiol. 62:946–958.PubMedGoogle Scholar
  52. Schoen, S. W., Leutenecker, B., Kreutzberg, G. W., and Singer, W., 1990, Ocular dominance plasticity and developmental changes of 5′-nucleotidase distributions in the kitten visual cortex, J. Comp. Neurol. 296:379–392.PubMedCrossRefGoogle Scholar
  53. Shatz, C. J., and Stryker, M. P., 1988, Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents, Science 242:87–89.PubMedCrossRefGoogle Scholar
  54. Sheu, F. S., Kasamatsu, T, and Routtenberg, A., 1990, Protein kinase C activity and substrate (Fl/GAP-43) phosphorylation in developing cat visual cortex, Brain Res. 524:144–148.PubMedCrossRefGoogle Scholar
  55. Stichel, C. C., and Singer, W., 1988, Localization of isoenzymes II/III of protein kinase C in the rat visual cortex (area 17), hippocampus and dentate gyrus, Exp. Brain Res. 72:443–449.PubMedCrossRefGoogle Scholar
  56. Takahashi, M., Sugiyama, M., and Tsumoto, T., 1993, Contribution of NMDA receptors to tetanus-induced increase in postsynaptic Ca2+ in visual cortex of young rats, Neurosci. Res. 17:229–239.PubMedCrossRefGoogle Scholar
  57. Wong, R. O. L., Meister, M., and Shatz, C. J., 1993, Transient period of correlated bursting activity during development of the mammalian retina, Neuron 11:923–938.PubMedCrossRefGoogle Scholar
  58. Yuste, R., and Katz, L. C., 1991, Control of postsynaptic Ca++ influx in developing neocortex by excitatory and inhibitory neurotransmitters, Neuron 6:333–344.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations