Concepts of Plasticity

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

The fundamental question that many scientists in the field of visual development are tackling today is: what are the mechanisms that underlie plasticity in the visual cortex? How can the system adapt to abnormalities in the visual environment, and readapt when the abnormality is corrected? How do infants and children have this capability, and why do adults lack it?

Keywords

Visual Cortex Electrical Activity Critical Period Presynaptic Terminal Ocular Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320:172–176.PubMedCrossRefGoogle Scholar
  2. Bienenstock, E. L., Cooper, L. N., and Munro, P. W., 1982, Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex, J. Neurosci. 2:32–48.PubMedGoogle Scholar
  3. Blasdel, G. G., and Pettigrew, J. D., 1979, Degree of interocular synchrony required for maintenance of binocularity in kitten’s visual cortex, J. Neurophysiol. 42:1692–1710.PubMedGoogle Scholar
  4. Carmignoto, G., Canella, R., Candeo, P., Comelli, M. C., and Maffei, L., 1993, Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex, J. Physiol. (London) 464:343–360.Google Scholar
  5. Cynader, M. S., and Mitchell, D. E., 1980, Prolonged sensitivity to monocular deprivation in dark-reared cats, J. Neurophysiol. 43:1026–1040.PubMedGoogle Scholar
  6. Daw, N. W., 1994, Mechanisms of plasticity in the visual cortex, Invest. Ophthalmol. Vis. Sci. 35:4168–4179.PubMedGoogle Scholar
  7. Daw, N. W., Sato, H., Fox, K., Carmichael, T., and Gingerich, R., 1991, Cortisol reduces plasticity in the kitten visual cortex, J. Neurobiol. 22:158–168.PubMedCrossRefGoogle Scholar
  8. Freeman, R. D., and Bonds, A. B., 1979, Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement, Science 206:1093–1095.PubMedCrossRefGoogle Scholar
  9. Gordon, B., Daw, N. W., and Parkinson, D., 1991, The effect of age on binding of MK-801 in the cat visual cortex, Dev. Brain Res. 62:61–68.CrossRefGoogle Scholar
  10. Hebb, D. O., 1949, The Organization of Behaviour, Wiley, New York, p. 62.Google Scholar
  11. Hubel, D. H., and Wiesel, T. N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28:1041–1059.PubMedGoogle Scholar
  12. Kleinschmidt, A., Bear, M. F., and Singer, W, 1987, Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex, Science 238:355–358.PubMedCrossRefGoogle Scholar
  13. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191:1–51.PubMedCrossRefGoogle Scholar
  14. Lisman, J. E., 1985, A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase, Proc. Natl. Acad. Sci. USA 82:3055–3057.PubMedCrossRefGoogle Scholar
  15. Lisman, J., 1989, A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory Proc. Natl. Acad. Sci. USA 86:9574–9578.PubMedCrossRefGoogle Scholar
  16. Lovinger, D. M., Akers, R. F., Nelson, R. B., Barnes, C. A., McNaughton, B. L., and Routtenberg, A., 1985, A selective increase in phosphorylation of protein Fl, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement, Brain Res. 343:137–143.PubMedCrossRefGoogle Scholar
  17. Mclntosh, H., Daw, N. W., and Parkinson, D., 1990, GAP-43 in the cat visual cortex during postnatal development, Vis. Neurosci. 4:585–594.CrossRefGoogle Scholar
  18. Mower, G. D., 1991, The effect of dark rearing on the time course of the critical period in cat visual cortex, Dev. Brain Res. 58:151–158.CrossRefGoogle Scholar
  19. Purves, D., and Lichtman, J. W., 1980, Elimination of synapses in the developing nervous system, Science 210:153–157.PubMedCrossRefGoogle Scholar
  20. Rauschecker, J. P., and Singer, W., 1979, Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity, Nature 280:58–60.PubMedCrossRefGoogle Scholar
  21. Shaw, C, and Cynader, M. S., 1984, Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens, Nature 308:731–734.PubMedCrossRefGoogle Scholar
  22. Singer, W., 1982, Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions, Exp. Brain Res. 47:209–222.PubMedGoogle Scholar
  23. Skene, J. H. P., Jacobson, R. D., Snipes, G. J., McGuire, C. B., Norden, J. J., and Freeman, J. A., 1986, A protein induced during nerve growth (GAP43) is a major component of growth-cone membranes, Science 233:783–786.PubMedCrossRefGoogle Scholar
  24. Stent, G. S., 1973, A physiological mechanism for Hebb’s postulate of learning, Proc. Natl. Acad. Sci. USA 70:997–1001.PubMedCrossRefGoogle Scholar
  25. Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2133.PubMedGoogle Scholar
  26. Stryker, M. P., and Strickland, S. L., 1984, Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity, Invest. Ophthalmol. Suppl. 25:278.Google Scholar
  27. Swindale, N. V., Vital-Durand, F., and Blakemore, C., 1981, Recovery from monocular deprivation in the monkey. III. Reversal of anatomical effects in the visual cortex, Proc. R. Soc. Lond B. Biol. Sci. 213:435–450.PubMedCrossRefGoogle Scholar
  28. Zador, A., Koch, C., and Brown, T. H., 1990, Biophysical model of a Hebbian synapse, Proc. Natl. Acad. Sci. USA 87:6718–6722.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations