Metabolism of Arginine in Invertebrates : Relation to Urea Cycle and to Other Guanidine Derivatives

  • Y. Robin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)

Abstract

The metabolism of arginine in invertebrates, even when limited to its relation to urea cycle and to the biosynthesis of the other guanidine derivatives, is somewhat complex. This is due, in a large part, to the number and disparity of the invertebrate phyla, and to the resulting dispersion of the data.

Keywords

Nitrogen Metabolism Urea Cycle Arginase Activity Oxidative Deamination Comparative Biochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Krebs and K. Henseleit, Untersuchungen über die Harnstoffbildung im Tierkörper, Z. Physiol. Chem 210: 33 (1932).CrossRefGoogle Scholar
  2. 2.
    O. Meyerhof, Uber die Verbreitung der Argininphosphorsäure in der Muskulatur der Wirbellosen, Arch. Sci. Biol. Italy, 12: 536 (1928).Google Scholar
  3. 3.
    E. Baldwin, “Dynamic Aspects of Biochemistry”, 2nd ed., University Press, Cambridge (1953).Google Scholar
  4. 4.
    J.W. Campbell and S.H. Bishop, Nitrogen Metabolism in Molluscs, in: “Comparative Biochemistry of Nitrogen Metabolism”, vol. 1, J.W. Campbell ed., Academic Press, London (1970).Google Scholar
  5. 5.
    A.E. Needham, Nitrogen Metabolism in Annelida, in: “Comparative Biochemistry of Nitrogen Metabolism”, vol. 1, J.W. Campbell ed., Academic Press, London (1970).Google Scholar
  6. 6.
    R. Hartenstein, Nitrogen Metabolism in Non-Insect Arthropods, in: Comparative Biochemistry of Nitrogen Metabolism”, vol. 1, J.W. Campbell ed., Academic Press, London (1970).Google Scholar
  7. 7.
    J.J. Corrigan, Nitrogen Metabolism in Insects, in: “Comparative Biochemistry of Nitrogen Metabolism”, vol. 1, J.W. Campbell ed., Academic Press, London (1970).Google Scholar
  8. 8.
    M. Florkin, Nitrogen Metabolism, in: “Chemical Zoology”, vol. 4, M. Florkin and B.T. Scheer, eds., Academic Press, New York (1969).Google Scholar
  9. 9.
    P.A. Janssens and C. Bryant, The Ornithine-Urea Cycle in Some Parasitic Helminths, Comp. Biochem. Physiol, 30: 261 (1969).CrossRefGoogle Scholar
  10. 10.
    J.W. Campbell, Arginine and Urea Biosynthesis in the Land Planarian: its Significance in Biochemical Evolution, Nature 208: 1299 (1965).PubMedCrossRefGoogle Scholar
  11. 11.
    P.P. Cohen and G.W. Brown Jr., Ammonia Metabolism and Urea Biosynthesis, in: “Comparative Biochemistry”, vol. II, M. Florkin and H.S. Mason, eds., Academic Press, New York (1960).Google Scholar
  12. 12.
    S. Gaston and J.W. Campbell, Distribution of arginase activity in molluscs, Comp. Biochem. Physiol, 17: 259 (1966).PubMedCrossRefGoogle Scholar
  13. 13.
    N.V. Thoai, Nitrogenous bases, in: “Comprehensive Biochemistry”, vol. 6, M. Florkin and E.H. Stotz, eds., Elsevier Publishing Co., Amsterdam (1965).Google Scholar
  14. 14.
    N.V. Thoai and Y. Robin, Guanidine Compounds and Phosphagens, in: “Chemical Zoology”, vol. 4: Annelida, Echiura and Sipuncula, M. Florkin and B.T. Scheer, eds., Academic Press, New York and London (1969).Google Scholar
  15. 15.
    L. Chevolot, Guanidine Derivatives, in: “Marine Natural Products” vol. 4, P.J. Scheuer ed., Academic Press, London (1981).Google Scholar
  16. 16.
    N.V. Thoai, J. Roche and Y. Robin, Métabolisme des Dérivés Guanidylés. I. Dégradation de l’Arginine chez les Invertébrés Marins, Biochim. Biophys. Acta, 11: 403 (1953).CrossRefGoogle Scholar
  17. 17.
    T. Suzuki and S. Muraoka, New Guanidyl Derivatives and Amino Acids in the Extract of Shell-Fish Cristaria plicata Leach, J. Pharm. Soc. Japan, 74: 171 (1954).Google Scholar
  18. 18.
    Y. Guillou and Y. Robin, Présence de a-N-acétylagmatine chez des Cnidaires, Actinia equina et Actinia fragacea, Compt. Rend. Soc. Biol, 173: 576 (1979).Google Scholar
  19. 19.
    Y. Robin and N.V. Thoai, Métabolisme Oxydatif de la L-Arginine chez la Limnée, Limnaea stagnalis. I. Oxydation par la L-Aminoacideoxydase, Compt. Rend. Soc. Biol, 151: 2093 (1957).Google Scholar
  20. 20.
    I. Garcia, J. Roche and M. Tixier, Sur le Métabolisme de la LArginine chez les Insectes. I., Bull. Soc. Chim. Biol, 38: 1423 (1956).PubMedGoogle Scholar
  21. 21.
    R. Baret, M. Mourgue, A. Broc and J. Charmot, Etude Comparative de la Désamidination de l’Acide y-Guanidobutyrique et de l’Arginine par l’Hépatopancréas ou le Foie de Divers Invertébrés, Compt. Rend. Soc. Biol, 159: 2446 (1965).Google Scholar
  22. 22.
    Z. Porembska, I. Gasiorowska and I. Mochnacka. Isolation of Arginase and Guanidinobutyrate Ureohydrolase from the Hepatopancreas of Helix pomatia, Acad. Biochim. Pol, 15: 171 (1968).Google Scholar
  23. 23.
    N.V. Thoaí, Y. Robin and L.A. Pradel, Métabolisme Oxydatif de la L-Arginine chez la Limnée, Limnaea stagnalis L. II. Oxydation en Guanidobutyramide, Compt. Rend. Soc. Biol, 151: 2097 (1957).Google Scholar
  24. 24.
    N.V. Thoai and T.T. An, Sur une Nouvelle Amidase Spécifique: la Guanidobutyramidase, Compt. Rend. Soc. Biol, 150: 1722 (1956).Google Scholar
  25. 25.
    N.V. Thoai and Y. Robin, Métabolisme des Dérivés Guanidylés. VIII. Biosynthèse de l’Octopine et Répartition de l’Enzyme l’Opérant chez les Invertébrés. Biochim. Biophys. Acta, 35: 446 (1959).CrossRefGoogle Scholar
  26. 26.
    Y. Robin and N.V. Thoai, Métabolisme des Dérivés Guanidylés. X. Métabolisme de l’Octopine: son Rôle Biologique. Biochim. Biophys. Acta, 52: 233 (1961).PubMedCrossRefGoogle Scholar
  27. 27.
    G.Gäde, Biological Role of Octopine Formation in Marine Molluscs, Marine Biology Letters, 1: 121 (1980).Google Scholar
  28. 28.
    S. Makisumi, Guanidino Compounds from a Sea-Anemone, Anthopleura japonica Verril, J. Biochem, 49: 284 (1961).Google Scholar
  29. 29.
    D. Ackermann, Asterubin, eine Schwefelhaltige Guanidinverbindung der Belebten Natur, Z. Physiol. Chem, 232: 206 (1935).CrossRefGoogle Scholar
  30. 30.
    N.V. Thoai, Y. Robin and Y. Guillou, A New Phosphagen, N’-Phosphorylguanidinoethylphospho-0-(a-N,N-Dimethyl)Serine (Phosphothalassemine), Biochemistry, 11: 3890 (1972).Google Scholar
  31. 31.
    R.J. Rossiter, T. Gaffney, H. Rosenberg and A.H. Ennor, Biosynthesis of Lombricine, Nature, 185: 383 (1960).CrossRefGoogle Scholar
  32. 32.
    Y. Robin, Répartition et Métabolisme des Guanidines Monosubstituées d’Origine Animale, Thèse de Doctorat ès Sciences Naturelles, Paris (1954).Google Scholar
  33. Y. Guillou and Y. Robin, Phascolin_ (N-(3-Guanidinopropionyl)-2Hydroxy-n-Heptylamine) and Phascolosomine (N-(3-Guanidinoisobutyryl)-2-Methoxy-n-Heptylamine), Two New Guanidino Compounds from Sipunculid Worms. Isolation and Structure, J. Biol. Chem, 248: 5668 (1973).Google Scholar
  34. 34.
    Y. Robin, Phosphagens and Molecular Evolution in Worms, Bio-Systems, 6: 49 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    Y. Robin, Les Phosphagènes des Animaux Marins, in: ”Actualités de Biochimie Marine”,vol. 2, Y. Le Gal, ed., Centre National de la Recherche Scientifique, Paris (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Y. Robin
    • 1
  1. 1.Laboratoire de Biochimie MarineEcole Pratique des Hautes Etudes (Collège de France)ParisFrance

Personalised recommendations