The Relation Between the Developmental Timing of Birth and Developmental Increases in Urea Cycle Enzymes

  • W. H. Lamers
  • P. G. Mooren
  • W. Oosterhuis
  • H. Lunstroo
  • A. De Graaf
  • R. Charles
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)


Experimental studies of rat development have shown that the first appearance and possibly part of the preweaning increase of many liver-specific enzymes is due to developmental maturation of the liver itself, but that the major increases in enzyme activity in the perinatal and preweaning periods are due to changing hormone levels. To establish the general nature of this type of developmental regulation we have studied enzyme activity changes during development of the spiny mouse, a closely related murine rodent which has apart from a different developmental timing of the moment of birth, a similar developmental timescale as the rat. Comparison of these altricial (rat) and precocial (spiny mouse) modes of development shows that the first appearance of enzyme activity in the liver (but also in the pancreas and small intestine) is developmental stage-specific, but that the first major increase in enzyme activities awaits the (differently timed) perinatal period. The preweaning increase in enzyme activity appears to be at least partly a developmental stage-specific event. These comparative studies therefore confirm the regulatory model of enzyme accumulation which was derived from experimental studies in the rat. Developmental profiles of human liver enzymes resemble those of the spiny mouse more than they do those of the rat.


Perinatal Period Developmental Profile Spiny Mouse Tyrosine Aminotransferase Post Coitum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Greengard, Biochemical actions of hormones, Vol. 1., Academic Press, New York (1970).Google Scholar
  2. 2.
    W. H. Lamers and P. G. Mooren, Mech. Ageing Dev. 15: 93 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Takeuchi, M. Ogawa, C. Furihata, T. Kawashi and T. Sugimura, Biochim. Biophys. Acta 497: 657 (1977).CrossRefGoogle Scholar
  4. 4.
    S.J. Henning and N. Kretchmer, Enzyme 15: 3 (1973).PubMedGoogle Scholar
  5. 5.
    W. Oosterhuis et al., to be published.Google Scholar
  6. 6.
    W. H Lamers and P. G. Mooren, Biol. Neonate 37: 113 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    W. H. Lamers and P. G. Mooren, Biol. Neonate 37: 264 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    W. H. Lamers and P. G. Mooren, Mech. Ageing Dev. 15: 77 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    W. H. Lamers and P. G. Mooren, Biol. Neonate, in press.Google Scholar
  10. 10.
    F. Dieterlen, Z. Saugetiere 28: 193 (1962).Google Scholar
  11. 11.
    A. W. A. Gonzalez, Anat. Rec. 52: 117 (1932).CrossRefGoogle Scholar
  12. 12.
    R. Charles, A. de Graaf, A. F. Moorman, Biochim. Biophys. Acta 629: 36 (1980).CrossRefGoogle Scholar
  13. 13.
    W. M. Maniscalco, C. M. Wilson, I. Gross, L. Gobran, S.A. Rooney, J. B. Warshaw, Biochim. Biophys. Acta 530: 333 (1978).CrossRefGoogle Scholar
  14. 14.
    S. A. Rooney, T. S. Wai-Lee, L. Gobran, E. K. Motoyama, Biochim. Biophys.Acta 431: 447 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    T. T. Ngo and H. M. Lenhoff, Anal. Biochem. 105: 389 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Caska, K. Birath and B. Brown, Clin. Chim. Acta 26: 437 (1969).CrossRefGoogle Scholar
  17. 17.
    O. Greengard, M. Federman, W.E. Knox, J. Cell Biol. 52: 261 (1972).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Keibel, “Normen Tafeln zur Entwicklungsgeschichte der Wirbeltiere”, Heft 15, Gustav Fisher Verlag, Jena (1937).Google Scholar
  19. 19.
    W. Ruch, Rev. Suisse Zool. 74: 566 (1967).PubMedGoogle Scholar
  20. 20.
    L.B. Rall, R. L. Pictet, R. H. Williams, W. J. Rutter, Proc. Nat. Acad. Sci. USA 70: 3478 (1973).CrossRefGoogle Scholar
  21. 21.
    M. De Gasparo, Gen. Comp. Endocrinol. 41: 499 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Flückiger and P. Operschall, Rev. Suisse Zool. 69: 297 (1962).Google Scholar
  23. 23.
    L. Bolk, “Das Problem der Menschwerdung”, Gustav Fisher Verlag. Jena (1926).Google Scholar
  24. 24.
    O. Greengard, Pediat. Res. 11: 669 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    N. C. R. Räihä “The urea cycle”, Wiley, New York (1975).Google Scholar
  26. 26.
    S. J. Gould, “Ontogeny and Phylogeny”, Harvard University Press, Cambridge, Ma, USA (1977).Google Scholar
  27. 27.
    W. H. Lamers et al., J. Exp. Zool., accepted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • W. H. Lamers
    • 1
  • P. G. Mooren
    • 1
  • W. Oosterhuis
    • 1
  • H. Lunstroo
    • 1
  • A. De Graaf
    • 1
  • R. Charles
    • 1
  1. 1.Department of Anatomy and EmbryologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations