Enzyme Regulation of N-Acetylglutamate Synthesis in Mouse and Rat Liver

  • Masamiti Tatibana
  • Susumu Kawamoto
  • Tomoko Sonoda
  • Masataka Mori
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)


Ṉ-Acetylglutamate (AGA) synthetase of mammalian liver is known to be stimulated by low concentrations of arginine. The arginine sensitivity of the synthetase was found to show postprandial changes in the liver of DD-Y mice. AGA synthetase activity assayed in the absence of arginine changed only slightly during and after the feeding. With 1 mM arginine, the activity increased and reached a peak value 9 h after the start of feeding. The activation ratios were about 2 and 6 at 0 and 9 h, respectively. Similar changes occurred with 0%, 20%, and 60% casein diets. When the enzymes were partially purified, the respective activation ratios remained the same, suggesting no involvement of a readily dissociable low molecular weight compound. Treatment of mice with cycloheximide did not abolish the increase in the activation ratio. A homogeneous preparation of the synthetase was obtained by a 30,000-fold purification from sonicated mitoplasts of rat liver mitochondria. The molecular weight was 160,000, as estimated on sucrose density gradient centrifugation, with subunits of 57,000 on SDS-gel electrophoresis. The enzyme had a hydrophobic nature, was stabilized by Triton X-100, and contained little phospholipid. Although the molecular basis of the increase in the activation ratio remains to be established, the modification of the nature of AGA synthetase introduces another aspect into the elaborate regulation of urea synthesis.


Liver Mitochondrion Urea Cycle Synthetase Activity Carbamoyl Phosphate Urea Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Grisolia and P. P. Cohen, J. Biol. Chem. 204: 753 (1953).PubMedGoogle Scholar
  2. 2.
    L. M. Hall, R. L. Metzenberg, and P. P. Cohen, J. Biol. Chem. 230: 1013 (1958).PubMedGoogle Scholar
  3. 3.
    K. Shigesada and M. Tatibana, J. Biol. Chem. 246: 5588 (1971).PubMedGoogle Scholar
  4. 4.
    K. Shigesada and M. Tatibana, Biochem. Biophys. Res. Commun. 44: 1117 (1971).CrossRefGoogle Scholar
  5. 5.
    M. Tatibana and K. Shigesada, Adv. Enzyme Regul. 10: 249 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Tatibana and K. Shigesada, in:“The Urea Cycle,” S. Grisolia,R. Bâguena, and F. Mayor, eds., John Wiley and Sons, New York, p.301 (1976).Google Scholar
  7. 7.
    K. Shigesada, K. Aoyagi, and M. Tatibana, Eur. J. Biochem. 85: 385 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Aoyagi, M. Mori, and M. Tatibana, Biochim. Biophys. Acta 587: 515 (1979).CrossRefGoogle Scholar
  9. 9.
    J. D. McGivan, N. M. Bradford, and J. Mendes-Mourâo, Biochem. J. 154: 415 (1976).PubMedGoogle Scholar
  10. 10.
    A. J. Meijer and G. M. van Woerkom, FEBS Lett. 86: 117 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    C. W. Cheung and L. Raijman, J. Biol. Chem. 255: 5051 (1980).PubMedGoogle Scholar
  12. 12.
    H. E. S. J. Hensgens, A. J. Verhoeven, and A. J. Meijer, Eur. J. Biochem. 107: 197 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Saheki, T. Katsunuma, and M. Sase, J. Biochem. 82: 551 (1977).PubMedGoogle Scholar
  14. 14.
    P. M. Stewart and M. Walser, J. Biol. Chem. 255: 5270 (1980).PubMedGoogle Scholar
  15. 15.
    A. J. Meijer, Trends Biochem. Sci. 4: 83 (1979).Google Scholar
  16. 16.
    M. Tatibana, K. Shigesada, and M. Mori, in:“The Urea Cycle,” S. Grisolia, R. Bâguena, and F. Mayor, eds., John Wiley and Sons, New York,p.95 (1976).Google Scholar
  17. 17.
    K. Shigesada and M. Tatibana, Eur. J. Biochem. 84: 285 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Bachmann, S. Krähenbühl, J. P. Colombo, G. Schubiger, K. H. Jaggi, and O. Tönz, N. Engl. J. Med. 304: 543 (1981).PubMedGoogle Scholar
  19. 19.
    H. Zollner, Biochim. Biophys. Acta 676: 170 (1981).CrossRefGoogle Scholar
  20. 20.
    T. Saheki, T. Ohkubo, and T. Katsunuma, J. Biochem. 84: 1423 (1978).PubMedGoogle Scholar
  21. 21.
    A. E. Harper, J. Nutr. 68: 405 (1959).PubMedGoogle Scholar
  22. 22.
    H. A. Krebs and K. Henseleit, Z. Physiol. Chem. 210: 33 (1932).CrossRefGoogle Scholar
  23. 23.
    T. Saheki and N. Katsunuma, J. Biochem. 77: 659 (1975).PubMedGoogle Scholar
  24. 24.
    N. S. Cohen, C. W. Cheung, and L. Raijman, J. Biol. Chem. 255: 10248 (1980).PubMedGoogle Scholar
  25. 25.
    R. J. A. Wanders, G. M. van Woerkom, R. F. Nooteboom, A. J. Meijer, and J. M. Tager, Eur. J. Biochem. 113: 295 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    A. J. Meijer, G. M. van Woerkom, R. Steinman, and J. R. Williamson, J. Biol. Chem. 256: 3443 (1981).PubMedGoogle Scholar
  27. 27.
    T. Morita, M. Mori, and M. Tatibana, J. Biochem., in pressGoogle Scholar
  28. 28.
    C. Schnaitman and J. M. Greenawalt, J. Cell Biol. 38: 158 (1968).PubMedCrossRefGoogle Scholar
  29. 29.
    F. X. Coude, L. Sweetman, and W. L. Nyhan, J. Clin. Invest. 64: 1544 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    J. K. Raison, Bioenergetics 4: 285 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Masamiti Tatibana
    • 1
  • Susumu Kawamoto
    • 1
  • Tomoko Sonoda
    • 1
  • Masataka Mori
    • 1
  1. 1.Department of BiochemistryChiba University School of MedicineInohana, Chiba 280Japan

Personalised recommendations