Regulation of the N-Acetylglutamate Content of Rat Hepatocytes by the Glutamate Concentration

  • H. Zollner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)


It is now generally accepted that the AcGlu concentration plays an important role in the regulation of urea synthesis (1–6). The mechanisms which control the AcGlu content are, however, not completely understood. AcGlu synthetase is specifically activated by arginine (7) but the mitochondrial arginine concentration is much higher than the Ka of arginine for isolated AcGlu synthetase (5). Aoyagi et al. (8) showed that the acetyl-CoA concentration affects the AcGlu content of isolated rat liver cells and Shigesada and coworkers (3) consider glutamate concentration to be an important factor in determining the AcGlu content.


Urea Cycle Pyruvate Carboxylase Glutamate Concentration Urea Synthesis Carbamyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. McGivan, N. M. Bradford, and J. Mendes-Mourao, The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria, Biochem. J. 154: 415 (1976).PubMedGoogle Scholar
  2. 2.
    T. Saheki, T. Katsunuma, and M. Sase, Regulation of urea synthesis in rat liver, J. Biochem. 82: 551 (1977).PubMedGoogle Scholar
  3. 3.
    K. Shigesada, K. Aoyagi, and M. Tatibana, Role of acetylglutamate in ureotelism, Eur. J. Biochem. 85: 385 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Saheki, T. Ohkubo, and T. Katsunuma, Regulation of urea synthesis in rat liver, J. Biochem. 84: 1423 (1978).PubMedGoogle Scholar
  5. 5.
    H. E. S. J. Hensgens, A. J. Verhoeven, and A. J. Meijer, The relationship between intramitochondrial N-acetylglutamate and activity of carbamoylphosphate synthetase (ammonia), Eur. J. Biochem. 107: 197 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Zollner, Regulation of urea synthesis, Biochim. Biophys. Acta 676: 170 (1981).CrossRefGoogle Scholar
  7. 7.
    M. Tatibana, K. Shigesada, and M. Mori, Acetylglutamate synthetase, in:“The Urea Cycle”, S. Grisola, R. Baguena, and F. Mayor, eds., Wiley, New York (1976).Google Scholar
  8. 8.
    K. Aoyagi, M. Mori, and M. Tatibana, Inhibition of urea synthesis by pent-4-enoate associated with decrease in N-acetyl-L-glutamate concentration in isolated rat hepatocytes, Biochim. Biophys. Acta 587: 515 (1979).CrossRefGoogle Scholar
  9. 9.
    M. N. Berry, and D. S. Friend, High-yield preparation of isolated rat liver parenchymal cells, J. Cell. Biol. 43: 506 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    H. A. Krebs, N. W. Cornell, P. Lund, and R. Hems, Isolated liver cells as experimental material, in:“Regulation of Hepatic Metabolism, Alfred Benzon Symposium VI”, F. Lundquist, and N. Tygstrup, eds., Academic Press, New York (1974).Google Scholar
  11. 11.
    D. K. Myers, and E. C. Slater, The enzymic hydrolysis of adenosine triphosphate by liver mitochondria, Biochem. J. 67: 558 (1957).PubMedGoogle Scholar
  12. 12.
    A. Reglero, J. Rivas, J. Mendelson, R. Wallace, and S. Grisola, Deacylation and transacetylation of acetyl glutamate and acetyl ornithine in rat liver, FEBS Lett. 81: 13 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    A. J. Meijer, J. A. Gimpel, G. Deleeuw, M. E. Tischler, J. M. Tager, and J. R. Williamson, Interrelationships between gluconeogenesis and ureogenesis in isolated hepatocytes, J. Biol. Chem. 253: 2308 (1978).PubMedGoogle Scholar
  14. 14.
    P. F. Zuurendonk, and J. M. Tager, Rapid separation of particulate components and soluble cytoplasm of isolated rat-liver cells, Biochim. Biophys. Acta 333: 393 (1974).CrossRefGoogle Scholar
  15. 15.
    R. M. Archibald, Determination of citrulline and allantoin and the demonstration of citrulline in blood plasma, J. Biol. Chem. 156: 121 (1944).Google Scholar
  16. 16.
    H. U. Bergmeyer, “Methoden der enzymatischen Analyse”, 2nd ed., Verlag Chemie, Weinheim (1970).Google Scholar
  17. 17.
    J. R. Williamson, and B. E. Corkey, Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods, Methods Enzymol. 13: 434 (1969).CrossRefGoogle Scholar
  18. 18.
    J. G. Gamble, and A. L. Lehninger, Transport of ornithine and citrulline across the mitochondrial membrane, J. Biol. Chem. 248: 610 (1973).PubMedGoogle Scholar
  19. 19.
    F. X. Coude, L. Sweetman, and W. L. Nyhan, Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria, J. Clin. Invest. 64: 1544 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    E. A. Siess, D. G. Brocks, H. K. Lattke, and O. H. Wieland, Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate, Biochem. J. 166: 225 (1977).PubMedGoogle Scholar
  21. 21.
    G. J. Barritt, G. L. Zander, and M. F. Utter, The regulation of pyruvate carboxylase activity in gluconeogenic tissues, in: “Gluconeogenesis - its regulation in mammalian species”, R. W. Hanson, and M. A. Mehlman, eds., Wiley, New York (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • H. Zollner
    • 1
  1. 1.Institute für BiochemieUniversität GrazGrazAustria

Personalised recommendations