Spontaneous Animal Models of Ornithine Transcarbamylase Deficiency: Studies on Serum and Urinary Nitrogenous Metabolites

  • I. A. Qureshi
  • J. Letarte
  • R. Ouellet
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)

Summary

Various groups of spf (sparse fur) and spf ash (allele with abnormal skin and hair) mice, were compared in respect of their liver ornithine transcarbamylase (OTC) activity, urinary orotate and concentrations of serum NH3 and glutamine. While liver OTC activity was comparable in both the strains, the excretion of urinary orotate was lower in spfash mice. In contrast to spf females, the spf ash/+ heterozygotes cannot be distinguished from normal +/+ females, as urinary orotate excretion has no significant correlation with liver OTC activity. However, serum glutamine is significantly correlated with liver OTC deficiency in both the strains. Administration of 1% sodium benzoate to spf/Y males resulted in a pattern of excretion of hippurate and urea N similar to clinical trials in humans. Urinary orotate was significantly reduced, while ad lib dietary intake increased almost 3 fold. Both the spontaneous animal models have considerable potential to be used in the investigation of the etiology, specific pathology and nutritional therapy of congenital hyperammonemias.

Keywords

Sodium Benzoate Orotic Acid Heterozygous Female Ornithine Transcarbamylase Urea Cycle Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Green, Mutant genes and linkages, in: “Biology of the Laboratory Mouse, 2nd Ed.,” E. L. Green, ed., Mc Graw Hill, New York, p. 116 (1966).Google Scholar
  2. 2.
    R. Demars, S. L. Levan, B. L. Trend, and L. B. Russel, Abnormal ornithine carbamyl transferase in mice having the sparse-fur mutation, Proc.Natl. Acad.Sci., USA 23: 1693 (1976).CrossRefGoogle Scholar
  3. 3.
    L. L. Hulbert and D. P. Doolittle, Abnormal skin and hair: a sex linked mutation in the mouse, Genetics 28: 529 (1971).Google Scholar
  4. 4.
    D. P. Doolittle, L. L. hulbert, and C. Cordy, A new allele of the sparse-fur gene in the mouse, J. Hered.65: 194 (1974).PubMedGoogle Scholar
  5. 5.
    I. A. Qureshi, J. Letarte, and R. Ouellet, Ornithine transcarbamylase deficiency in mutant mice. I. Studies on the characterization of enzyme defect and suitability as animal model of human disease, Pediat.Res. 13: 807 (1979).Google Scholar
  6. 6.
    I. A. Qureshi, J. Letarte, and S. R. Qureshi, Congenital hyperammonemia, in: Handbook: “Animal Models of Human Disease”, J. C. Jones, D. B. Hackle, and G. Migaki, eds., Registry of Comparative Pathology, Armed Forces Institute of Pathology, Washington D.C. (1981), in press.Google Scholar
  7. 7.
    I. Adachi, A. Tanimura, and M. Asahina, A colorimetric determintation of orotic acid, J. Vitaminol.9: 217 (1963).CrossRefGoogle Scholar
  8. 8.
    A. S. Goldstein, N. J. Hodgenraad, J. D. Johnson, K. Fukanage, E. Swierczewski, H. Cann, and P. Sunshine, Metabolic and genetic studies of a family with ornithine transcarbamylase deficiency, Pediat.Res. 8: 5 (1974).Google Scholar
  9. 9.
    G. Ceriotti, Ultramicro determination of plasma urea by reaction with diacetylmonoxime antipyrine without deproteinization, Clin.Chem. 17: 400 (1971).Google Scholar
  10. 10.
    K. Tomokuni and M. Ogata, Direct colorimetric determination of hippuric acid in urine, Clin. Chem. 18:349 (1972)Google Scholar
  11. 11.
    J. H. Hutchinson and D. H. Labby, New method for the micro-determination of blood ammonia by use of the cation exchange resin, J. Lab. Clin.Med. 60:170 (1962).Google Scholar
  12. 12.
    T. Welbourne, M. Weber, and N. Bank, The effect of glutamine on ammonium excretion in normal subjects and in patients with renal disease, J. Clin. Invest.56:1852 (1972)Google Scholar
  13. 13.
    G. Ceriotti, Optimal conditions for ornithine carbamyl transferase determination, Clin.Chim. Acta 4: 97 (1973).CrossRefGoogle Scholar
  14. 14.
    I. A. Qureshi, J. Letarte, and R. Ouellet, Study of enzyme defect in a case of ornithine transcarbamylase deficiency Diabete Métabol.4: 239 (1978).Google Scholar
  15. 15.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin-Phenol reagent, J. Biol. Chem.191:265 (1961)..Google Scholar
  16. 16.
    G. W. Snedecor and W. G. Cochran, “Statistical Methods”, 2nd ed. Iowa University Press, Ames, Iowa, pp. 541–575 (1967).Google Scholar
  17. 17.
    B. Levin, V. G. Oberholzer, R. L. Sinclair, Biochemical investigation of hyperammonemia, Lancet 2: 170 (1969).Google Scholar
  18. 18.
    R. G. F. Gray, J. A. Black, V. H. Lyons, and R. J. Pollitt, Ornithine transcarbamylase deficiency, Pediat.Res. 10: 918. (1976).CrossRefGoogle Scholar
  19. 19.
    P. Briand, L. Cathelineau, P. Kamoun, D. Gigot, and M. Penninckz, Increase of ornithine transcarbamylase protein in sparse fur mice with ornithine transcarbamylase deficiency FEBS Lett.130: 65 (1981).Google Scholar
  20. 20.
    S. Brusilow, J. Tinker, and M. L. Batshaw, Amino-acid acylation: A mechanism of nitrogen excretion in inborn errors of urea synthesis, Science 207: 659 (1980).Google Scholar
  21. 21.
    J. Kao, C. A. Jones, J. R. Fry, and J. N. Bridges, Species differences in the metabolism of benzoic acid by isolated hepatocytes and kidney tubules, Life Sci. 23: 1221 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    D. P. Doolittle, Personal communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • I. A. Qureshi
    • 1
    • 2
  • J. Letarte
    • 1
    • 2
  • R. Ouellet
    • 1
    • 2
  1. 1.Laboratoire de NutritionCentre de Recherche Pédiatrique Hôpital Sainte-JustineCanada
  2. 2.Département de PédiatrieUniversité de MontréalCanada

Personalised recommendations