Skip to main content

Antennas and Electric Field Sensors for Ultra-Wideband Transient Time-Domain Measurements: Applications and Methods

  • Chapter
Ultra-Wideband, Short-Pulse Electromagnetics 3

Abstract

Many time-domain electromagnetic measurements require sensors that generate accurate signals proportional to the incident electric field for some finite clear time, after which the response may be of little interest, except for a possible frequency-domain requirement on the damping of resonances. In a review of earlier work,1 examples of such devices are given that combine more conventional antennas with open transmission lines. In designs that can have highly directional properties, antenna effective height h eff, risetime t r , and clear time t c may be chosen independently. Current work focuses on extending the parameter range of these sensors to greater sensitivity and shorter risetimes, where sensor performance becomes limited by the effects of skin and dielectric loss and dispersion. These limitations are largely overcome through the use of guided-wave optics in sensor designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. J. Buchenauer and J. R. Marek, “Antennas and Electric Field Sensors for Time-Domain Measurements: An Experimental Investigation,” in: Ultra-Wideband Short-Pulse Electrornagnetics 2, Plenum Press, New York, 1995.

    Google Scholar 

  2. E. G. Farr and C. J. Buchenauer, “Experimental Validation of IRA Models,” Sensor and Simulation Note 364, Jan. 1994.

    Google Scholar 

  3. C. J. Buchenauer and J. R. Marek, “Hybrid Antenna-Sources for Radiating High-Power Impulsive Fields,” in: Intense Microwave Pulses II, H.E.Brandt Editor, Proc. SPIE 2557, pp. 209–213, 1995.

    Chapter  Google Scholar 

  4. R. L. Wigington and N. S. Nahman, “Transient Analysis of Coaxial Cables Considering Skin Effect,” Proc. IRE, vol. 45, pp. 166–174, Feb. 1957.

    Article  Google Scholar 

  5. D. V. Giri and C. E. Baum, “Equivalent Displacement for a High-Voltage Rollup on the Edge of a Conduction Sheet,” Sensor and Simulation Note 294, Oct. 1986.

    Google Scholar 

  6. C. E. Baum and J. S. Tyo, “Transient Skin Effects in Cables,” Measurement Notes # 47, Aug. 1996.

    Google Scholar 

  7. T. L. Brown and K. D. Granzow, “A Parameter Study of Two-Parallel-Plate Transmission-Line Simulators of EMP Sensor and Simulation Note XXI,” Sensor and Simulation Note LII, Apr. 1968.

    Google Scholar 

  8. N. S. Nahman, “A Discussion on the Transient Analysis of Coaxial Cables Considering High-Frequency Losses,” IRE Trans. Circuit Theory, pp. 144–152, Jun. 1962.

    Google Scholar 

  9. N. S. Nahman, “A Note on the Transition (rise) Time Versus Line Length in Coaxial Cables,” IEEE Trans. Circuit Theory, vol. 20, pp. 165–167, Mar. 1973.

    ADS  Google Scholar 

  10. H. Curtins and A. V. Shah, “Pulse Behavior of Transmission Lines with Dielectric Losses,” IEEE Trans. Circuits and Systems, vol. 8, Aug. 1985.

    Google Scholar 

  11. E.A. Konscher, “Physical Basis of Dielectric Loss,” Nature, vol. 253, pp. 717–719, Feb. 1975.

    Article  ADS  Google Scholar 

  12. E. A. Konscher, “The ‘Universal’ Dielectric Response,” Nature, vol. 267, pp. 673–679, Jun. 1977.

    Article  ADS  Google Scholar 

  13. R. M. Hill, “Characterisation of Dielectric Loss in Solids and Liguids,” Nature, vol. 275, pp. 96–99, Sep. 1978.

    Article  ADS  Google Scholar 

  14. A. von Hippel and W. B. Westphal, “Tables of Dielectric Materials,” MIT Cambridge Laboratory for Insulation Research, Apr. 1957.

    Google Scholar 

  15. A. von Hippel, Dielectric Materials and Applications, Artech House, Boston, 1994.

    Google Scholar 

  16. C. E. Baum, “Aperture Efficiencies for IRA’s,” Sensor and Simulation Note 328, Jun. 1991.

    Google Scholar 

  17. E. G. Farr, and C. E. Baum, “Radiation from Self-Reciprocal Apertures,” in: Electromagnetic Symmetry, C. E. Baum and H. N. Kritikos, Editors, Taylor and Francis. Washington, D.C., 1995.

    Google Scholar 

  18. E. G. Farr, “Optimization of the Feed Impedance of Impulse Radiating Antennas Part IT: TEM Horn and Lens IRA’s,” Sensor and Simulation Note 384, Nov. 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buchenauer, C.J., Tyo, J.S., Schoenberg, J.S.H. (1997). Antennas and Electric Field Sensors for Ultra-Wideband Transient Time-Domain Measurements: Applications and Methods. In: Baum, C.E., Carin, L., Stone, A.P. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6896-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6896-1_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3276-1

  • Online ISBN: 978-1-4757-6896-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics