Skip to main content

Ground Penetrating Radar Enabled by High Gain GaAs Photoconductive Semiconductor Switches

  • Chapter
Ultra-Wideband, Short-Pulse Electromagnetics 3

Abstract

The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver fast risetime, low jitter pulses when triggered with small laser diode arrays makes them suitable for their use in ultrawide bandwidth (UWB), impulse transmitters. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss how GaAs switches are being implemented in a transmitter for detection of underground structures. The advantage of this type of semiconductor switch is demonstrated operation at high voltages (100 kV) and repetition rates (1 kHz) with the potential for much higher repetition rates. The latter would increase the demonstrated average powers of 100 W to 1 kW and higher. We will also present an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end, we have developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Loubriel, M. W. O’Malley, and F. J. Zutavern, “Toward Pulsed Power Uses for Photoconductive Semiconductor Switches: Closing Switches,” Proc. 6th IEEE Pulsed Power Conference, P. J. Turchi and B. H. Bernstein, Arlington, VA, 1987, p. 145.

    Google Scholar 

  2. G. M. Loubriel, F. J. Zutavern, M. W. O’Malley, and W. D. Helgeson, “High Gain GaAs Photoconductive Semiconductor Switches for Impulse Sources,” Proc. of SPIE Optically Activated Switching Conference IV, SPIE Proc. Series Vol. 2343, pp. 180186, W. R. Donaldson, ed., Boston, MA, October 31-November 4, 1994.

    Google Scholar 

  3. F. J. Zutavern and G. M. Loubriel, “High Voltage Lateral Switches from Si or GaAs,” High-Power Optically Activated Solid-State Switches, A. Rosen and F. J. Zutavern, Artech House, Boston, 1993, p. 245.

    Google Scholar 

  4. See Proceedings from: 6–8th IEEE Pulsed Power Conf., 1987, 1989, 1991; 18–20th IEEE Power Modulator Symposium, 1988, 1990, 1992; SPIE Optically Activated Switching I-III, (vol. 1378, 1632, 1873), 1990, 1992, 1993; and IEEE Trans. Elec. Devices, (vol. 37, 38), 1990, 1992.

    Google Scholar 

  5. R. S. Clark, L. F. Rinehart, M. T. Buttram, and J. F. Aurand, “An overview of Sandia National Laboratories’ Plasma Switched, GigaWatt, Ultra-Wideband Impulse-Transmitter Program,” Ultra-Wideband, Short Pulse Electromagnetics, L. Bertoni, L. Carin, and L. Felsen, Plenum Press, New York, 1993, pp. 93–98.

    Google Scholar 

  6. B. C. Brock and W. E. Patitz, “Optimum Frequency for Subsurface-Imaging Synthetic Aperture Radar,” Sandia National Laboratories’ report SAND93–0815 and B. C. Brock and K. W. Sorensen, “Electromagnetic Scattering from Buried Objects,” report SAND94–2361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loubriel, G.M., Buttram, M.T., Aurand, J.F., Zutavern, F.J. (1997). Ground Penetrating Radar Enabled by High Gain GaAs Photoconductive Semiconductor Switches. In: Baum, C.E., Carin, L., Stone, A.P. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6896-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6896-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3276-1

  • Online ISBN: 978-1-4757-6896-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics