Electromagnetic Analysis of Exponentially Tapered Coplanar Stripline Antennas Used in Coherent Microwave Transient Spectroscopy Technique

  • Valérie Bertrand
  • Michèle Lalande
  • Bernard Jecko


With the advent of reliable sources of ultrashort optical pulses, photoconductive switches and photoconductive sampling have become usual methods that allow to generate and to detect ultra-fast electric pulses. Recent experiments have shown that commuting devices of optoelectronic pulses associated with appropriate antennas can be used to generate, control and detect picosecond bursts of electromagnetic radiation. It leads to various applications1 such as the transient radiation properties of antennas2, the scattering of radiation by three-dimensional objects3 or the characterization of material by the coherent microwave transient spectroscopy technique4.


Radiation Pattern Gaussian Pulse Substrate Thickness Finite Difference Time Domain Method Ultrashort Optical Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Arjavalingam, Y. Pastol, J.-M. Halbout and W. M. Robertson, “Optoelectronically-pulsed antennas: characterization and applications”, IEEE Antennas and Propagation Magazine; pp. 6–11, Feb. 1991.Google Scholar
  2. 2.
    M. M. Gitin, F. W. Wise, G. Arjavalingam, Y. Pastol and R. C. Compton, “Broad-band characterization millimeter-wave log-periodic antennas by photoconductive sampling”, IEEE Trans. on Antennas and Propagation, Vol. 42, no. 3, March 1994.Google Scholar
  3. 3.
    W. M. Robertson, G. V. Kopcsay and G. Arjavalingam, “Picosecond time domain electromagnetic scattering from conducting cylinders”, IEEE Microwave and Guided Wave Letters, Vol. 1, no. 12, pp 249–251, Dec. 1991.Google Scholar
  4. 4.
    G. Arjavalingam, Y. Pastol, J.-M. Halbout and G. V. Kopcsay, “Broad-band microwave measurements with transient radiation from optoelectronically pulsed antennas”, IEEE Trans. Microwave Theory Tech., vol. 38, no. 5, pp. 615–621, May 1990.ADSCrossRefGoogle Scholar
  5. 5.
    W. M. Robertson, Optoelectronic Techniques for Microwave and Millimeter-Wave Engineering, Artech House, Boston-London, 1995.Google Scholar
  6. 6.
    A. Taflove, “Advances in finite-difference time-domain methods for engineering electromagnetics”, in: Ultra-Wideband, Short-Pulse, Electromagnetics 2, L. Carin and L. B. Felsen, Plenum Press, New York and London, 1995.Google Scholar
  7. 7.
    M. Heimlich, W. M. Robertson, G. Arjavalingam and J.-M. Halbout, “Effect of substrate thickness on radiation properties of coplanar strip antennas”, Electronics Letters, vol. 28, no. 3, Jan. 1992.Google Scholar
  8. 8.
    Y. Pastol, G. Arjavalingam, J.-M. Halbout and G. V. Kopcsay, “Characterisation of an optoelectronically pulsed broadband microwave antenna”, Electronics Letters, vol. 24, no 21, pp 1318–1319, Oct. 1988.CrossRefGoogle Scholar
  9. 9.
    W. M. Robertson, G. Arjavalingam and G. V. Kopcsay, “Microwave diffraction and interference in reflection using transient radiation from optoelectronically pulsed antennas”, Appl. Phys. Lett. 57 (19), Nov. 1990.Google Scholar
  10. 10.
    J. F. Eloy, V. Gerbe, J. H. Trombert, “Mise au point d’une expérience optoélectronique de caractérisation des propriétés transitoires de matériaux”, to be presented at the 4ème Journées de Caractérisation Microonde et Matériaux, Chambéry ( France ), April 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Valérie Bertrand
    • 1
  • Michèle Lalande
    • 1
  • Bernard Jecko
    • 1
  1. 1.Institut de Recherche en Communications Optiques et MicroondesCNRS - URA n° 356LimogesFrance

Personalised recommendations