Generation of Wideband Antenna Performance by [Z] and [Y] Matrix Interpolation in the Method of Moments

  • Kathleen L. Virga
  • Yahya Rahmat-Samii


Designing antennas for modern radar and communications applications often requires the evaluation of the antenna’s ultra-wide band (UWB) operation capabilities. Identifying the appropriate electromagnetic modeling tools for UWB antennas can be challenging, since such antennas come in a wide-variety of configurations that range from thin-wire types to complex structures such as spirals, bow-ties, etc. The triangular surface patch method of moments (MoM) formulation1,2 is one popular modeling approach. The surface mesh allows flexibility in modeling detailed antenna features. Since the elements of the MoM impedance matrix, or [Z], must be recomputed for each new frequency, the computation of antenna performance over an wide frequency range can take a long time.


Input Impedance Impedance Matrix Antenna Performance Matrix Interpolation Admittance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. AP-30, pp. 409–418, May 1982.Google Scholar
  2. 2.
    S.-U. Wu and D. R. Wilton, “Electromagnetic scattering and radiation by arbitrary configurations of conducting bodies and wires,” Technical Document 1325, University of Houston. Applied Electromagnetics Laboratory, Dept. of Electrical Engineering, Aug. 1988.Google Scholar
  3. 3.
    E. H. Newman and D. Forrai, “Scattering from a microstrip patch,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 245–251, Mar. 1987.Google Scholar
  4. 4.
    K. L Virga and Y. Rahmat-Samii, “Wide-band evaluation of communications antennas using [Z] matrix interpolation with the method of moments,” 1995 IEEE AP-S Intl. Symposium Digest, pp. 1262–1264, Newport Beach, CA, June 1995.Google Scholar
  5. 5.
    E. H. Newman, “Generation of wide-band data from the method of moments by interpolating the impedance matrix,” IEEE Trans. Antennas Propagat., AP-36, pp. 1820–1824, Dec. 1988.Google Scholar
  6. 6.
    T. K Sarkar, K. R. Siarkiewicz, and R. F. Stratton, “Survey of numerical methods for solution of large systems of linear equations for electromagnetic field problems, ” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 847–856, Nov. 1981.Google Scholar
  7. 7.
    F. X. Canning, “Direct solution of the EFIE with half the computation, ” IEEE Trans. Antennas Propagat., vol. AP-39, pp. 118–119, Jan. 1991.Google Scholar
  8. 8.
    G. F. Herrmann, “Note on interpolational basis functions in the method of moments, ” IEEE Trans. Antennas Propagat., vol. AP-38, pp. 134–137, Jan. 1990.Google Scholar
  9. 9.
    T. W. Nuteson, K. Naishadham, and R. Mittra, “Spatial interpolation of the moment matrix in electromagnetic scattering and radiation problems, ” 1993 IEEE AP-S Intl. Symposium Digest, pp. 860–863, Ann Arbor, MI, June 1993.Google Scholar
  10. 10.
    G. Vecchi, P. Pirinoli, L. Matekovits, and M. Orefice, “Reduction of the filling time of method of moments matrices, ” 11th Annual Review of Progress in Applied Computational Electromagnetics, pp. 600–605, Monterery, CA, Mar. 1995.Google Scholar
  11. 11.
    G. J. Burke, E. K. Miller, S. Chakrabarti, and K. Demarest, “Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions,” IEEE Trans. Magn., vol. 25, pp. 2807–2809, July 1989.ADSCrossRefGoogle Scholar
  12. 12.
    K. Kottapalli, T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, “Accurate computation of wide-band response of electromagnetic systems utilizing narrow-band information, ” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 682–687, Apr. 1991.ADSCrossRefGoogle Scholar
  13. 13.
    A. F. Peterson, “Higher-order surface patch basis functions for EFIE formulations, ” 1994 IEEE AP-S Intl. Symposium Digest, pp. 2162–2165, Seattle, WA, June 1994.Google Scholar
  14. 14.
    D. R. Wilton, “Review of current status and trends in the use of integral equations in computational electromagnetics,” Electromagnetics, vol. 12, pp. 287–341, 1992.CrossRefGoogle Scholar
  15. 15.
    K. Hirasawa and M. Haneishi, Analysis, Design and Measurement of Small Low Profile Antennas, Artech House, 1992.Google Scholar
  16. 16.
    A. J. Poggio, E. K. Miller, and G. J. Burke, “An integro-differential equation technique for the time-domain analysis of thin-wire structures,” Journal of Computational Physics, vol. 12, pp. 210–233, 1973.ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kathleen L. Virga
    • 1
  • Yahya Rahmat-Samii
    • 1
  1. 1.Department of Electrical EngineeringUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations