Transportation Supply Models

  • Ennio Cascetta
Part of the Applied Optimization book series (APOP, volume 49)


This chapter deals with the mathematical models simulating transportation supply systems. In broad terms a transportation supply model can be defined as a model, or rather a system of models, simulating the performances and the flows resulting from users’ demand and the technical and organizational aspects of the physical transportation supply. The general structure of a supply model is depicted in Fig. 2.1.1, where several elements (or sub-models) can be distinguished. The graph defines the topology of the connections allowed by the transportation system under study, while the network loading or flow propagation model defines the relationship among path and link flows. The link performance model expresses for each element (link) the relationships between performances, physical and functional characteristics, and flow of users. The impact model simulates the main external impacts of the supply system. Finally, the path performance model defines the relationship between the performances of single elements (links) and those of a whole trip (path) between any origin-destination pair.


Queue Length Road Segment Link Cost Link Performance Traffic Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference Notes

  1. [225]
    Potts R.B., and R.M. Oliver (1972). Flows in transportation networks. Academic Press, New York.zbMATHGoogle Scholar
  2. [197]
    Newell G.F. (1980). Traffic flows in transportation networks. MIT Press, Cambridge, Mass.Google Scholar
  3. [234]
    Sheffi Y. (1985). Urban transportation networks. Prentice Hall, Englewood Cliff, NJ.Google Scholar
  4. [52]
    Cantarella G.E., and E. Cascetta (1998). Stochastic Assignment to Transportation Networks: Models and Algorithms. In Equilibrium and Advanced Transportation Modelling, P. Marcotte, S.Nguyen (editors): 87107. ( Proceedings of the International Colloquium, Montreal, Canada October, 1996 ).Google Scholar
  5. [113]
    Ferrari P. (1996). Appunti di Pianificazione dei Trasporti. 2d edition, Editorial service of the University of Pisa, Italy.Google Scholar
  6. [216]
    Ortuzar D., and L.G. Willumsen (1994). Modelling Transport John Wiley and Sons, 2nd edition.Google Scholar
  7. [223]
    Pignataro L.J. (1973). Traffic engineering, theory and practice. Prentice-Hall, Englewood Cliffs.Google Scholar
  8. [185]
    May A.D. (1990). Traffic Flow Fundamentals. Prentice Hall, Englewood Cliffs.Google Scholar
  9. [187]
    McShane W.R., and R.P. Roess (1990). Traffic Engineering. Prentice Hall, Englewood Cliffs.Google Scholar
  10. [217]
    Papageorgiou M. ed. (1991). Concise Encyclopedia of Traffic and Transportation System Pergamon Press.Google Scholar
  11. [255]
    Webster F.V. (1958). Traffic signal settings. Road Research Technical Paper 39, HMSO, London.Google Scholar
  12. [256]
    Webster F.V. e Cobbe B.M. (1966). Traffic Signals. Road Research Technical Paper 56, HMSO, London.Google Scholar
  13. [83]
    Catling I. (1977). A time-dependent approach to junction delays Traffic Engineering and Control 18.Google Scholar
  14. [156]
    Kimber R.M., M. Marlow, and E.M. Hollis (1977). Flow-delay relationships at major-minor junctions Traffic Engineering and Control 18.Google Scholar
  15. [160]
    Koppelman F.S., and J. Hauser (1978). Destination Choice Behavior for Non-Grocery-Shopping Trips Transportation Research Records 673: 157165.Google Scholar
  16. [230]
    Robertson D.I. (1979). Traffic models and optimum strategies of control: a review. Proceedings of the International Symposium on Traffic Control Systems. Edited by W.S. Homburger and L. Steinman, vol. 1, University of California, Berkeley, California: 262–288.Google Scholar
  17. [4]
    Akcelik R. (1988). The Highway Capacity Manual delay formula for signalized intersections ITE Journal: 23–27.Google Scholar
  18. [110]
    Drake, Shofer, and May (1967). A statistical analysis of speed-density hypotheses Highway Research Record 154, Transportation Research Board.Google Scholar
  19. [129]
    Greenshields B. (1934). A study of traffic capacity Proceedings of the Highway Research Board 14, Transportation Research Board.Google Scholar
  20. [221]
    Payne H.J. (1971). Models of freeway traffic and control Simulation Council Proc. 1:51–61.Google Scholar
  21. [44]
    Branston D. (1976). Link Capacity Functions: a review Transportation Research 10: 223–236.Google Scholar
  22. [146]
    Hurdle V.F. (1984). Signalized intersection delay models: a primer for the uniniziated Transportation Research Record 971.Google Scholar
  23. [172]
    Lupi M. (1996). Determinazione del livello di servizio di una intersezione urbana: alcune osservazioni sulla modellizzazione del ritardo. Proceedings of “V Convegno SIDT”, Naples.Google Scholar
  24. [66]
    Cascetta E., and A. Nuzzolo (1982). Analisi statistica del processo delle velocità in autostrada Autostrade 6.Google Scholar
  25. [30]
    Bifulco G.N. (1993). A stochastic user equilibrium assignment model for the evaluation of parking policies EJOR 71: 269–287.Google Scholar
  26. [113]
    Ferrari P. (1996). Appunti di Pianificazione dei Trasporti. 2d edition, Editorial service of the University of Pisa, Italy.Google Scholar
  27. [208]
    Nuzzolo A., and F. Russo (1997). Modelli per l’analisi e la simulazione dei sistemi di trasporto collettivo. Ed. Franco Angeli, Rome.Google Scholar
  28. [233]
    Seddon P.A., and M.P. Day (1974). Bus passenger waiting time in Greater Manchester Traffic Engineering and Control: 442–445.Google Scholar
  29. [154]
    Joliffe J.K., and T.P. Hutchinson (1975). A behavioural explanation of the association between bus and passenger arrivals at a bus stop Transportation Science: 248–281.Google Scholar
  30. [193]
    Montella B., and E. Cascetta (1978). Tempo di attesa alle fermate di un servizio di trasporto collettivo urbano. Ingegneria Ferroviaria 9: 827–832.Google Scholar
  31. [71]
    Cascetta E., and B. Montella (1979). Modelli di arrivo dei passeggeri alle fermate di un sistema di trasporto collettivo urbano. La Rivista della Strada 453: 303–308.Google Scholar
  32. [209]
    Nuzzolo A., and Russo F. (1993). Un modello di rete diacronica per 1 ‘assegnazione dinamica al trasporto collettivo extraurbano Ricerca Operativa 67: 37–56.Google Scholar
  33. [37]
    Bouzaiene-Ayari B., M. Gendrau, and S. Nguyen (1998). Passenger assignment in congested transit networks: a historical perspective. In P. Marcotte and S. Nguyen (eds.) “Equilibrium and advanced transportation modelling”, Kluwer: 47–71.Google Scholar
  34. [196]
    Newell G.F. (1971). Application of queuing theory. Chapman and Hall LTD, London.Google Scholar
  35. [158]
    Kleinrock L. (1975). Queuing System. Vol. I and I I, Jon Wiley and Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Ennio Cascetta
    • 1
  1. 1.Dipartimento di Ingegneria dei Trasporti “Luigi Tocchetti”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations