Path Recovery/Reconstruction and Applications in Nonlinear Multimodal Multicommodity Networks

  • Teodor Gabriel Crainic
  • Gina Dufour
  • Michael Florian
  • Diane Larin
Part of the Applied Optimization book series (APOP, volume 63)


Two issues are addressed in this paper: (1) How to reconstruct the product-specific path information based on the link and transfer flows that result from a nonlinear, multimodal, multiproduct network optimization formulation and (2) how to use this information efficiently for various path analyses for transportation planning purposes. The paper also touches upon the challenge of introducing a major development into a mature and complex software such as the STAN decision support system for the strategic analysis and planning of multimodal multiproduct freight transportation. Results from actual applications are used to illustrate the path analysis capabilities of STAN.


Path Analysis Mode Choice Assignment Model Assignment Procedure Path Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charland, Y. (1996). Reconstitution d’itinéraires optimaux dans un réseau multimodesmultiproduits. M.Sc. Dissertation, Département d’informatique et recherche opérationnelle, Université de Montréal, Montréal, QC, Canada.Google Scholar
  2. Crainic, T.G. (1999). Long Haul Freight Transportation. In Hall, R.W., editor, Handbook of Transportation Science, pages 433–491. Kluwer, Norwell, MA.CrossRefGoogle Scholar
  3. Crainic, T.G., Dufour, G., Florian, M., and Larin, D. (1999). Path Analysis in STAN. In C. Zopounidis and D. Despotis, editors, Proceedings 5th International Conference of the Decision Sciences Institute, pages 2060–2064. New Technologies Publications, Athens, Greece.Google Scholar
  4. Crainic, T.G., Dufour, G., Florian, M., and Larin, D., and Leve, Z. (2000). Demand Matrix Adjustment for Multimodal Freight Networks. Publication CRT-2000–34, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.Google Scholar
  5. Crainic, T.G., Florian, M., Guélat, J., and Spiess, H. (1990). Strategic Planning of Freight Transportation: STAN, An Interactive-Graphic System. Transportation Research Record, 1283: 97–124.Google Scholar
  6. Crainic, T.G., Florian, M., and Larin, D. (1994). STAN: New Developments. In Al S. Khade and R. Brown, editors, Proceedings of the 23rd Annual Meeting of the Western Decision Sciences Institute, pages 493–498. School of Business Administration, California State University, Stanislaus CA.Google Scholar
  7. Crainic, T.G., Florian, M., and Léal, J.-E. (1990). A Model for the Strategic Planning of National Freight Transportation by Rail. Transportation Science, 24 (1): 1–24.CrossRefGoogle Scholar
  8. Crainic, T.G. and Laporte, G. (1997). Planning Models for Freight Transportation. European Journal of Operational Research, 97 (3): 409–438.CrossRefGoogle Scholar
  9. Drissi-Kaïtouni, O. (1988). An Algorithm for the Decomposition of Arc Flows into Path Flows for the GSPEP. Publication CRT 569, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.Google Scholar
  10. Florian, M. and Chen, Y. (1995). A Coordinate Descent Method for the Bi-level 0-D Matrix Adjustment Problem. International Transactions in Operations Research,2(2):165–179.Google Scholar
  11. Florian, M. and Hearn, D. (1995). Networks Equilibrium Models and Algorithms. In Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Routing, volume 8 of Handbooks in Operations Research and Management Science, pages 485–550. North-Holland, Amsterdam.Google Scholar
  12. Frank, M. and Wolfe, P. (1956). An Algorithm for Quadratic Programming. Naval Research Logistics Quaterly, 3: 95–110.CrossRefGoogle Scholar
  13. Guélat, J., Florian, M., and Crainic, T.G. (1990). A Multimode Multiproduct Network Assignment Model for Strategic Planning of Freight Flows. Transportation Science, 24 (1): 25–39.CrossRefGoogle Scholar
  14. Larin, D., Crainic, T.G., Simonka, G., James-Lefebvre, L., Dufour, G., and Florian, M. (2000). STAN User’s Manual, Release 6. INRO Consultants, Inc., Montréal, QC, Canada.Google Scholar
  15. Spiess, H. (1990). A Gradient Approach for the 0-D Matrix Adjustment Problem. Publication 693, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Teodor Gabriel Crainic
  • Gina Dufour
  • Michael Florian
  • Diane Larin

There are no affiliations available

Personalised recommendations